NER实战:(命名实体识别/文本标注/Doccano工具使用/关键信息抽取/Token分类/源码解读)

命名实体识别(Named Entity Recognition,NER)是自然语言处理领域的一项关键任务,旨在从文本中识别和分类特定的命名实体,如人名、地名、组织机构名等。NER的目标是标记文本中的实体,并将其归类到预定义的实体类型中。

NER通常使用机器学习和深度学习技术来完成任务。以下是一种常见的NER流程:

  1. 数据收集和标注:收集包含命名实体的文本数据,并为每个实体标注相应的标签(实体类型)。

  2. 特征提取:从文本数据中提取有用的特征,如词性、词形、上下文等。这些特征将作为输入提供给模型。

  3. 模型训练:使用标注好的数据和提取的特征来训练NER模型。常用的模型包括条件随机场(CRF)、循环神经网络(RNN)、长短期记忆网络(LSTM)、卷积神经网络(CNN)和注意力机制(Attention)等。

  4. 模型评估和调优:使用评估数据集来评估训练得到的模型性能,并进行调优以提高准确性和召回率。

  5. 实体识别:使用训练好的NER模型对新的文本进行实体识别。模型将识别并标记文本中的命名实体,使其易于提取和理解。

NER在许多应用中起着重要作用,例如信息抽取、问答系统、文本摘要、机器翻译等。它可以帮助自动化处理大量文本数据,并提供有关实体的结构化信息,为后续的分析和应用提供基础。

今天晚上我吃了一只烤鸭

今天是一个时间

是一个人

烤鸭是一个食物

构建一个三元组(今天,我,烤鸭),进行分类

(更新中,可以先收藏)

相关推荐
sauTCc1 小时前
DataWhale-三月学习任务-大语言模型初探(一、二、五章学习)
人工智能·学习·语言模型
Y1nhl1 小时前
力扣hot100_二叉树(4)_python版本
开发语言·pytorch·python·算法·leetcode·机器学习
snow@li3 小时前
AI问答:transformer 架构 / 模型 / 自注意力机制实现序列数据的并行处理 / AI的底层
人工智能·深度学习·transformer
cv2016_DL3 小时前
siglip2推理教程
人工智能·transformer
小枫小疯3 小时前
Pytorch 转向TFConv过程中的卷积转换
人工智能·pytorch·python
明朝百晓生3 小时前
【PyTorch][chapter-34][transformer-6] RoPE
人工智能·pytorch·transformer
Wis4e4 小时前
基于PyTorch的深度学习6——可视化工具Tensorboard
人工智能·pytorch·深度学习
Wis4e5 小时前
基于PyTorch的深度学习——机器学习1
pytorch·深度学习·机器学习
闲人编程7 小时前
生成对抗网络(GAN)实战
pytorch·神经网络·gan