NER实战:(命名实体识别/文本标注/Doccano工具使用/关键信息抽取/Token分类/源码解读)

命名实体识别(Named Entity Recognition,NER)是自然语言处理领域的一项关键任务,旨在从文本中识别和分类特定的命名实体,如人名、地名、组织机构名等。NER的目标是标记文本中的实体,并将其归类到预定义的实体类型中。

NER通常使用机器学习和深度学习技术来完成任务。以下是一种常见的NER流程:

  1. 数据收集和标注:收集包含命名实体的文本数据,并为每个实体标注相应的标签(实体类型)。

  2. 特征提取:从文本数据中提取有用的特征,如词性、词形、上下文等。这些特征将作为输入提供给模型。

  3. 模型训练:使用标注好的数据和提取的特征来训练NER模型。常用的模型包括条件随机场(CRF)、循环神经网络(RNN)、长短期记忆网络(LSTM)、卷积神经网络(CNN)和注意力机制(Attention)等。

  4. 模型评估和调优:使用评估数据集来评估训练得到的模型性能,并进行调优以提高准确性和召回率。

  5. 实体识别:使用训练好的NER模型对新的文本进行实体识别。模型将识别并标记文本中的命名实体,使其易于提取和理解。

NER在许多应用中起着重要作用,例如信息抽取、问答系统、文本摘要、机器翻译等。它可以帮助自动化处理大量文本数据,并提供有关实体的结构化信息,为后续的分析和应用提供基础。

今天晚上我吃了一只烤鸭

今天是一个时间

是一个人

烤鸭是一个食物

构建一个三元组(今天,我,烤鸭),进行分类

(更新中,可以先收藏)

相关推荐
TT-Kun42 分钟前
PyTorch基础——张量计算
人工智能·pytorch·python
老鱼说AI6 小时前
循环神经网络RNN原理精讲,详细举例!
人工智能·rnn·深度学习·神经网络·自然语言处理·语音识别
阿男官官8 小时前
[Token]ALGM: 基于自适应局部-全局token合并的简单视觉Transformer用于高效语义分割, CVPR2024
人工智能·深度学习·transformer·语义分割
java1234_小锋8 小时前
【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 微博评论数据可视化分析-点赞区间折线图实现
python·自然语言处理·flask
**梯度已爆炸**9 小时前
语言模型的评估指标整理
人工智能·语言模型·自然语言处理
wydxry9 小时前
MOE架构详解:原理、应用与PyTorch实现
人工智能·pytorch·架构
麦兜*10 小时前
大模型时代,Transformer 架构中的核心注意力机制算法详解与优化实践
jvm·后端·深度学习·算法·spring·spring cloud·transformer
天才少女爱迪生14 小时前
pytorch的自定义 CUDA 扩展怎么学习
人工智能·pytorch·学习
计算机sci论文精选14 小时前
ACL 2024 大模型方向优秀论文:洞察NLP前沿关键突破
人工智能·深度学习·语言模型·多模态·acl·机器翻译模型
SHIPKING39314 小时前
【机器学习&深度学习】NLP评价指标 BLEU 和 ROUGE
深度学习·机器学习·自然语言处理