NER实战:(命名实体识别/文本标注/Doccano工具使用/关键信息抽取/Token分类/源码解读)

命名实体识别(Named Entity Recognition,NER)是自然语言处理领域的一项关键任务,旨在从文本中识别和分类特定的命名实体,如人名、地名、组织机构名等。NER的目标是标记文本中的实体,并将其归类到预定义的实体类型中。

NER通常使用机器学习和深度学习技术来完成任务。以下是一种常见的NER流程:

  1. 数据收集和标注:收集包含命名实体的文本数据,并为每个实体标注相应的标签(实体类型)。

  2. 特征提取:从文本数据中提取有用的特征,如词性、词形、上下文等。这些特征将作为输入提供给模型。

  3. 模型训练:使用标注好的数据和提取的特征来训练NER模型。常用的模型包括条件随机场(CRF)、循环神经网络(RNN)、长短期记忆网络(LSTM)、卷积神经网络(CNN)和注意力机制(Attention)等。

  4. 模型评估和调优:使用评估数据集来评估训练得到的模型性能,并进行调优以提高准确性和召回率。

  5. 实体识别:使用训练好的NER模型对新的文本进行实体识别。模型将识别并标记文本中的命名实体,使其易于提取和理解。

NER在许多应用中起着重要作用,例如信息抽取、问答系统、文本摘要、机器翻译等。它可以帮助自动化处理大量文本数据,并提供有关实体的结构化信息,为后续的分析和应用提供基础。

今天晚上我吃了一只烤鸭

今天是一个时间

是一个人

烤鸭是一个食物

构建一个三元组(今天,我,烤鸭),进行分类

(更新中,可以先收藏)

相关推荐
2501_948120159 小时前
基于量化感知训练的大语言模型压缩方法
人工智能·语言模型·自然语言处理
MARS_AI_9 小时前
大模型赋能客户沟通,云蝠大模型呼叫实现问题解决全链路闭环
人工智能·自然语言处理·信息与通信·agi
名为沙丁鱼的猫7299 小时前
【MCP 协议层(Protocol layer)详解】:深入分析MCP Python SDK中协议层的实现机制
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
HDO清风11 小时前
CASIA-HWDB2.x 数据集DGRL文件解析(python)
开发语言·人工智能·pytorch·python·目标检测·计算机视觉·restful
小Tomkk11 小时前
PyTorch +YOLO + Label Studio + 图像识别 深度学习项目实战 (二)
pytorch·深度学习·yolo
工程师老罗11 小时前
Pytorch如何加载和读取VOC数据集用来做目标检测?
人工智能·pytorch·目标检测
副露のmagic12 小时前
草履虫级 Transformer code by hand
深度学习·bert·transformer
阿杰学AI13 小时前
AI核心知识75——大语言模型之MAS (简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·agent·多智能体协作·mas
AndrewHZ14 小时前
【AI黑话日日新】什么是AI智能体?
人工智能·算法·语言模型·大模型·llm·ai智能体