Bring Your Data!Self- supervised Evolution of Large Language Models

Bring Your Data!Self- supervised Evolution of Large Language Models

Introduction

这篇论文提出了一种自监督的评估方式来衡量大型语言模型的能力和局限性。常规的基于数据集的评估方式存在一些缺点:

  1. 需要不断新建数据集。
  2. 存在数据集和模型训练数据交叉的问题,影响评估结果。
  3. 难以评估模型在实际部署中的表现。为了弥补这些缺点,论文提出了自监督评估方法。

主要思想是:对输入文本做一些简单的转换(如添加否定词、颠倒词序等),然后比较原始文本和转换文本模型的输出(或概率分布),通过模型对这些转换的不变性或敏感度来评估它的能力。

Method

自监督评估的主要思想是:

基于输入文本做某种简单的转换,形成一对原始文本和变换后的文本,将这对文本送入模型,分析模型对这种转换的不变性或敏感度,将多个这样的文本对的数据聚合,形成一个总体上的不变性或敏感度分数。

具体过程:

  1. 对数据集(如维基百科)构建输入文本x和变换后的文本x'对。
  2. 将这对文本送入模型f,获取模型输出(可以是概率分布、困惑值、文本等)。
  3. 根据输出f(x)和f(x')使用一个相似度度量M量化它们的相似性。
  4. 将相似度度量在整个数据集上聚合,使用聚合函数A计算最终的不变性/敏感度分数。

论文提出了以下变换来评估模型:

  1. 添加否定词,测量模型对否定句子模型分布的变化,来反应模型的世界知识。

  2. 添加有毒引发词,分析模型生成的文本来测量模型对有毒文本的敏感度。

  3. 替换一些上下文句子,测量模型对最后一句话的概率分布变化,来反应模型对长距离上下文的敏感度。

  4. 颠倒词序,测量模型对概率分布的变化来反应模型对词序的敏感度。

  5. 将输入文本拆分后重新组合,测量模型对这样的分词变化的鲁棒性。

参考

https://arxiv.org/pdf/2306.13651.pdf

相关推荐
爱吃泡芙的小白白2 分钟前
神经网络压缩实战指南:让大模型“瘦身”跑得更快
人工智能·深度学习·神经网络·模型压缩
cooldream20095 分钟前
从语音到策略——ASR + 大语言模型驱动的辩论对话系统设计实践
人工智能·语言模型·具身数字人
人工智能AI技术11 分钟前
【Agent从入门到实践】42实战:用Docker打包Agent,实现一键部署
人工智能·python
dream_home840713 分钟前
拉普拉斯算子识别图像模糊详解
人工智能·计算机视觉
MobiusStack23 分钟前
MBTI性格测试图文制作指南,用01Agent套用爆款封面模板
人工智能
云草桑1 小时前
.net AI开发04 第八章 引入RAG知识库与文档管理核心能力及事件总线
数据库·人工智能·microsoft·c#·asp.net·.net·rag
2501_933329551 小时前
Infoseek数字公关AI中台技术解析:如何构建企业级舆情监测与智能处置系统
开发语言·人工智能
AI即插即用1 小时前
即插即用系列 | AAAI 2026 WaveFormer: 当视觉建模遇上波动方程,频率-时间解耦的新SOTA
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
轻览月1 小时前
【DL】复杂卷积神经网络Ⅰ
人工智能·神经网络·cnn
逄逄不是胖胖1 小时前
《动手学深度学习》-55-2RNN的简单实现
人工智能·深度学习