LangChain(5)Conversational Agents

Large Language Models (LLMs) 在语义知识方面表现不错,但也有一些不足,如:不能正确计算数学公式、无法获取最新知识新闻

通过 Agents 可以赋予 LLMs 更多能力,让LLM能够计算、上网查询

agent 简单使用

python 复制代码
from langchain import OpenAI
# 语言模型
llm = OpenAI(
openai_api_key="OPENAI_API_KEY",
temperature=0,
model_name="text-davinci-003"
)

from langchain.chains import LLMMathChain
from langchain.agents import Tool
# 能计算数学公式的一个chain
llm_math = LLMMathChain(llm=llm)

# initialize the math tool
math_tool = Tool(
name='Calculator',
func=llm_math.run,
description='Useful for when you need to answer questions about math.' # 描述工具能做什么
)
# when giving tools to LLM, we must pass as list of tools
tools = [math_tool]

# 如果 langchain.agents 中有相关工具,则可以直接使用
#from langchain.agents import load_tools
#tools = load_tools(
#['llm-math'],
#llm=llm
)

# 初始化 agent
from langchain.agents import initialize_agent
zero_shot_agent = initialize_agent(
				agent="zero-shot-react-description", # 无记忆的agent
				tools=tools, # tools 中只有math_tool,所以只能做计算
				llm=llm,
				verbose=True, # 显示执行过程
				max_iterations=3
		)
zero_shot_agent("what is (4.5*2.1)^2.2?")

上面的 tools 中只有math_tool,所以 zero_shot_agent 只能做计算,不能回答其它常识问题,可以在 tools 中添加更多工具,使得 zero_shot_agent 拥有更多能力。

python 复制代码
# 可以在 tools 中新增聊天工具
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
prompt = PromptTemplate(
input_variables=["query"],
template="{query}"
)
llm_chain = LLMChain(llm=llm, prompt=prompt)

# initialize the LLM tool
llm_tool = Tool(
name='Language Model',
func=llm_chain.run,
description='use this tool for general purpose queries and logic'
)
tools.append(llm_tool)
# reinitialize the agent
zero_shot_agent = initialize_agent(
agent="zero-shot-react-description",
tools=tools,
llm=llm,
verbose=True,
max_iterations=3
)

agent 类型

zero-shot-react-description 无缓存的方式,聊天是单次的,无上下文缓存

python 复制代码
zero_shot_agent = initialize_agent(
agent="zero-shot-react-description",
tools=tools,
llm=llm,
verbose=True,
max_iterations=3,
)

conversational-react-description 带缓存

python 复制代码
from langchain.memory import ConversationBufferMemory

memory = ConversationBufferMemory(memory_key="chat_history")

conversational_agent = initialize_agent(
agent='conversational-react-description',
tools=tools,
llm=llm,
verbose=True,
max_iterations=3,
memory=memory,
)

react-docstore 可以检索知识库,无缓存

python 复制代码
from langchain import Wikipedia
from langchain.agents.react.base import DocstoreExplorer

docstore=DocstoreExplorer(Wikipedia())
tools = [
			Tool(
				name="Search", # 信息检索
				func=docstore.search, 
				description='search wikipedia'
			),
			Tool(
				name="Lookup", # 匹配相近结果
				func=docstore.lookup, 
				description='lookup a term in wikipedia'
			)
]

docstore_agent = initialize_agent(
								tools,
								llm,
								agent="react-docstore",
								verbose=True,
								max_iterations=3
								)

self-ask-with-search 将LLM与搜索引擎结合起来

python 复制代码
from langchain import SerpAPIWrapper

# initialize the search chain
search = SerpAPIWrapper(serpapi_api_key='serp_api_key')

# create a search tool
tools = [
			Tool(
			name="Intermediate Answer",
			func=search.run,
			description='google search'
			)
		]

# initialize the search enabled agent
self_ask_with_search = initialize_agent(
						tools,
						llm,
						agent="self-ask-with-search",
						verbose=True
						)

参考:
Superpower LLMs with Conversational Agents

相关推荐
白日做梦Q3 分钟前
Anchor-free检测器全解析:CenterNet vs FCOS
python·深度学习·神经网络·目标检测·机器学习
喵手18 分钟前
Python爬虫实战:公共自行车站点智能采集系统 - 从零构建生产级爬虫的完整实战(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集公共自行车站点·公共自行车站点智能采集系统·采集公共自行车站点导出csv
喵手25 分钟前
Python爬虫实战:地图 POI + 行政区反查实战 - 商圈热力数据准备完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·地区poi·行政区反查·商圈热力数据采集
熊猫_豆豆31 分钟前
YOLOP车道检测
人工智能·python·算法
nimadan1232 分钟前
**热门短剧小说扫榜工具2025推荐,精准捕捉爆款趋势与流量
人工智能·python
默默前行的虫虫36 分钟前
MQTT.fx实际操作
python
YMWM_1 小时前
python3继承使用
开发语言·python
JMchen1231 小时前
AI编程与软件工程的学科融合:构建新一代智能驱动开发方法学
驱动开发·python·软件工程·ai编程
亓才孓1 小时前
[Class类的应用]反射的理解
开发语言·python
小镇敲码人1 小时前
深入剖析华为CANN框架下的Ops-CV仓库:从入门到实战指南
c++·python·华为·cann