LangChain(5)Conversational Agents

Large Language Models (LLMs) 在语义知识方面表现不错,但也有一些不足,如:不能正确计算数学公式、无法获取最新知识新闻

通过 Agents 可以赋予 LLMs 更多能力,让LLM能够计算、上网查询

agent 简单使用

python 复制代码
from langchain import OpenAI
# 语言模型
llm = OpenAI(
openai_api_key="OPENAI_API_KEY",
temperature=0,
model_name="text-davinci-003"
)

from langchain.chains import LLMMathChain
from langchain.agents import Tool
# 能计算数学公式的一个chain
llm_math = LLMMathChain(llm=llm)

# initialize the math tool
math_tool = Tool(
name='Calculator',
func=llm_math.run,
description='Useful for when you need to answer questions about math.' # 描述工具能做什么
)
# when giving tools to LLM, we must pass as list of tools
tools = [math_tool]

# 如果 langchain.agents 中有相关工具,则可以直接使用
#from langchain.agents import load_tools
#tools = load_tools(
#['llm-math'],
#llm=llm
)

# 初始化 agent
from langchain.agents import initialize_agent
zero_shot_agent = initialize_agent(
				agent="zero-shot-react-description", # 无记忆的agent
				tools=tools, # tools 中只有math_tool,所以只能做计算
				llm=llm,
				verbose=True, # 显示执行过程
				max_iterations=3
		)
zero_shot_agent("what is (4.5*2.1)^2.2?")

上面的 tools 中只有math_tool,所以 zero_shot_agent 只能做计算,不能回答其它常识问题,可以在 tools 中添加更多工具,使得 zero_shot_agent 拥有更多能力。

python 复制代码
# 可以在 tools 中新增聊天工具
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
prompt = PromptTemplate(
input_variables=["query"],
template="{query}"
)
llm_chain = LLMChain(llm=llm, prompt=prompt)

# initialize the LLM tool
llm_tool = Tool(
name='Language Model',
func=llm_chain.run,
description='use this tool for general purpose queries and logic'
)
tools.append(llm_tool)
# reinitialize the agent
zero_shot_agent = initialize_agent(
agent="zero-shot-react-description",
tools=tools,
llm=llm,
verbose=True,
max_iterations=3
)

agent 类型

zero-shot-react-description 无缓存的方式,聊天是单次的,无上下文缓存

python 复制代码
zero_shot_agent = initialize_agent(
agent="zero-shot-react-description",
tools=tools,
llm=llm,
verbose=True,
max_iterations=3,
)

conversational-react-description 带缓存

python 复制代码
from langchain.memory import ConversationBufferMemory

memory = ConversationBufferMemory(memory_key="chat_history")

conversational_agent = initialize_agent(
agent='conversational-react-description',
tools=tools,
llm=llm,
verbose=True,
max_iterations=3,
memory=memory,
)

react-docstore 可以检索知识库,无缓存

python 复制代码
from langchain import Wikipedia
from langchain.agents.react.base import DocstoreExplorer

docstore=DocstoreExplorer(Wikipedia())
tools = [
			Tool(
				name="Search", # 信息检索
				func=docstore.search, 
				description='search wikipedia'
			),
			Tool(
				name="Lookup", # 匹配相近结果
				func=docstore.lookup, 
				description='lookup a term in wikipedia'
			)
]

docstore_agent = initialize_agent(
								tools,
								llm,
								agent="react-docstore",
								verbose=True,
								max_iterations=3
								)

self-ask-with-search 将LLM与搜索引擎结合起来

python 复制代码
from langchain import SerpAPIWrapper

# initialize the search chain
search = SerpAPIWrapper(serpapi_api_key='serp_api_key')

# create a search tool
tools = [
			Tool(
			name="Intermediate Answer",
			func=search.run,
			description='google search'
			)
		]

# initialize the search enabled agent
self_ask_with_search = initialize_agent(
						tools,
						llm,
						agent="self-ask-with-search",
						verbose=True
						)

参考:
Superpower LLMs with Conversational Agents

相关推荐
ChinaRainbowSea12 分钟前
7. LangChain4j + 记忆缓存详细说明
java·数据库·redis·后端·缓存·langchain·ai编程
爬虫程序猿38 分钟前
《京东商品详情爬取实战指南》
爬虫·python
胡耀超41 分钟前
4、Python面向对象编程与模块化设计
开发语言·python·ai·大模型·conda·anaconda
大佬,救命!!!2 小时前
整理python快速构建数据可视化前端的Dash库
python·信息可视化·学习笔记·dash·记录成长
孔丘闻言2 小时前
python调用mysql
android·python·mysql
Teletele-Lin2 小时前
Miniconda安装与VSCode搭建远程Python、Jupyter开发环境
vscode·python·jupyter·环境配置·远程开发
伊玛目的门徒3 小时前
告别 OpenAI SDK:如何使用 Python requests 库调用大模型 API(例如百度的ernie-4.5-turbo)
python·openai·requests·大模型调用·ernie-4.5-turbo
大模型教程3 小时前
12天带你速通大模型基础应用(四)声音克隆技术实践
程序员·llm·agent
sinat_602035364 小时前
模块与包的导入
运维·服务器·开发语言·python
计算机学姐4 小时前
基于Python的旅游数据分析可视化系统【2026最新】
vue.js·后端·python·数据分析·django·flask·旅游