【数学建模】统计分析方法

文章目录

  • 1.回归分析
  • [2. 逻辑回归](#2. 逻辑回归)
  • [3. 聚类分析](#3. 聚类分析)
  • [4. 判别分析](#4. 判别分析)
  • [5. 主成分分析](#5. 主成分分析)
  • [6. 因子分析](#6. 因子分析)
  • [7. 对应分析](#7. 对应分析)

1.回归分析

  • 数据量要多,样本总量n越大越好------>保证拟合效果更好,预测效果越好
    • 一般n>40/45较好
  • 方法
    • 建立回归模型 yi=β0+β1i+......+βkxki+εi
    • 所估计的公式写出来
    • 把数据带进去求回归系数【通过最小二乘估计求出β^是多少】
    • 【部分】检验回归系数β1,β2......βk是否为0,系数显著说明自变量x显著
      • 若βi=0,说明回归方程不受xi所影响,简化回归方程
    • 【整体】检验回归方程
      • 0<r^2<=1【R2越接近1模型越好,R2小一定不好 】
      • 方差分析
      • Sig【p值】越小越好 Sig<0.01较为显著
    • 预测未来

εi一般是iid的,表示相互独立且同分布,~N(σ,σ^2)

2. 逻辑回归

  • 因变量是属性变量,分类变量,至少有一个变量是连续的
  • 模型


3. 聚类分析

  • 系统聚类法【样本少的情况】
    不断缩减类的个数,且选择的标准不唯一
    • 对样品聚类
    • 对变量聚类

4. 判别分析

  • 选择的标准唯一,有监督的学习

5. 主成分分析

  • 目的:降维!!使变量减少

  • 取出一部分主成分【例:y1,y2,y3】
  • 用取出的主成分对y做回归
  • 估计y1,y2,y3前的系数因子a1,a2,a3
  • 对系数解读主成分中自变量x几占比较大【多使用因子分析】

6. 因子分析

  • 通过相关矩阵大部分元素都>0.3,相关系数较大
  • 写出因子模型,再分析

7. 对应分析

  • 横纵坐标都看作分类的变量


相关推荐
我爱C编程13 分钟前
基于Qlearning强化学习的机器人路线规划matlab仿真
matlab·机器人·强化学习·路线规划·qlearning·机器人路线规划
gang_unerry6 小时前
量子退火与机器学习(1):少量数据求解未知QUBO矩阵,以少见多
人工智能·python·算法·机器学习·数学建模·矩阵·量子计算
Evand J16 小时前
LOS/NLOS环境建模与三维TOA定位,MATLAB仿真程序,可自定义锚点数量和轨迹点长度
开发语言·matlab
孤亭远见20 小时前
COMSOL with Matlab
matlab
图南楠1 天前
simulink离散传递函数得到差分方程并用C语言实现
matlab
信号处理学渣1 天前
matlab画图,选择性显示legend标签
开发语言·matlab
机器学习之心1 天前
Bayes-GRU-Attention的数据多特征分类预测Matlab实现
matlab·分类·gru
叶庭云1 天前
Matlab 和 R 语言的数组索引都是从 1 开始,并且是左闭右闭的
matlab·编程语言·r·数组索引·从 1 开始
γ..2 天前
基于MATLAB的图像增强
开发语言·深度学习·神经网络·学习·机器学习·matlab·音视频
图表制作解说(目标1000个图表)2 天前
ECharts柱状图-柱图42,附视频讲解与代码下载
echarts·统计分析·数据可视化·柱状图·大屏可视化