图像处理之LoG算子(高斯拉普拉斯)

LoG算子(高斯拉普拉斯算子)

LoG算子是由拉普拉斯算子改进而来。拉普拉斯算子是二阶导数算子,是一个标量,具有线性、位移不变性,其传函在频域空间的原点为0。所有经过拉普拉斯算子滤波的图像具有零平均灰度。但是该算子的缺点是对噪声具有敏感性,因此在实际应用中,一般先要对图像进行平滑滤波,再用拉氏算子进行图像的边缘检测。这就是LoG算子的产生的背景(最后的梯度表达式为高斯函数和原图像卷积,再去二阶微分算子)。

其滤波函数模型为:

常用的5*5卷积核模板为:
[ 0 0 − 1 0 0 0 − 1 − 2 − 1 0 − 1 − 2 16 − 2 − 1 0 − 1 − 2 − 1 0 0 0 − 1 0 0 ] \left[ \begin{array} {cccc} 0&0&-1&0&0\\ 0&-1&-2&-1&0\\ -1&-2&16&-2&-1\\ 0&-1&-2&-1&0\\ 0&0&-1&0&0\\ \end{array} \right] 00−1000−1−2−10−1−216−2−10−1−2−1000−100

代码:

python 复制代码
import numpy as np
import  cv2
from matplotlib import pyplot as plt
import imgShow as iS

#定义掩膜
m1 = np.array([[0,0,-1,0,0],[0,-1,-2,-1,0],[-1,-2,16,-2,-1],[0,-1,-2,-1,0],[0,0,-1,0,0]]) #LoG算子模板
img = cv2.imread("./originImg/Lena.tif")
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#边缘扩充

image = cv2.copyMakeBorder(img, 2, 2, 2, 2, borderType=cv2.BORDER_REPLICATE)
# image = cv2.GaussianBlur(img,(3,3),4)
rows = image.shape[0]
cols = image.shape[1]
temp = 0
image1 = np.zeros(image.shape)

for i in range(2,rows-2):
    for j in range(2,cols-2):
        temp = np.abs(
            (np.dot(np.array([1, 1, 1, 1, 1]), (m1 * image[i - 2:i + 3, j - 2:j + 3])))
                .dot(np.array([[1], [1], [1], [1], [1]])))
        image1[i,j] = int(temp)
        if image1[i, j] > 255:
            image1[i, j] = 255
        else:
            image1[i, j] = 0
iS.showImagegray(image1,img , 25, 15, 'LoG', 'origin', './LoG.jpg')
# cv2.imshow("LoG",image1)
# cv2.waitKey(0)

检测结果为:

相关推荐
湫ccc8 分钟前
《Opencv》基础操作详解(3)
人工智能·opencv·计算机视觉
Jack_pirate18 分钟前
深度学习中的特征到底是什么?
人工智能·深度学习
微凉的衣柜32 分钟前
微软在AI时代的战略布局和挑战
人工智能·深度学习·microsoft
GocNeverGiveUp1 小时前
机器学习1-简单神经网络
人工智能·机器学习
Schwertlilien1 小时前
图像处理-Ch2-空间域的图像增强
人工智能
智慧化智能化数字化方案1 小时前
深入解读数据资产化实践指南(2024年)
大数据·人工智能·数据资产管理·数据资产入表·数据资产化实践指南
哦哦~9211 小时前
深度学习驱动的油气开发技术与应用
大数据·人工智能·深度学习·学习
智慧化智能化数字化方案2 小时前
120页PPT讲解ChatGPT如何与财务数字化转型的业财融合
人工智能·chatgpt
矩阵推荐官hy147622 小时前
短视频矩阵系统种类繁多,应该如何对比选择?
人工智能·python·矩阵·流量运营
lshzdq2 小时前
【机器人】机械臂轨迹和转矩控制对比
人工智能·算法·机器人