基于机器学习的情绪识别算法matlab仿真,对比SVM,LDA以及决策树

目录

1.算法理论概述

2.部分核心程序

3.算法运行软件版本

4.算法运行效果图预览

5.算法完整程序工程


1.算法理论概述

情绪识别是一种重要的情感分析任务,旨在从文本、语音或图像等数据中识别出人的情绪状态,如高兴、悲伤、愤怒等。本文介绍一种基于机器学习的情绪识别算法,使用三种常见的分类算法:支持向量机(SVM)、线性判别分析(LDA)和决策树,通过对比这三种算法在情绪识别任务上的性能,选取最优的算法进行情绪识别。所有算法均在MATLAB环境下进行仿真实验。

该算法的主要步骤如下:

第一步:数据预处理

从情绪数据库中加载情绪样本数据,对数据进行预处理,包括分词、去除停用词、词干提取等文本处理技术。将文本数据转换为数值特征向量,以便于后续的机器学习算法处理。

第二步:特征提取

使用文本数据的数值特征向量作为输入,选择适当的特征提取方法,将高维的特征向量降维至较低维度,以减少特征维度并保留主要信息。

第三步:训练分类器

将降维后的特征向量和对应的情绪标签作为训练集,使用SVM、LDA和决策树等分类算法训练分类器模型。

第四步:测试和评估

将剩余的样本数据作为测试集,利用训练好的分类器对测试集进行情绪识别。使用准确率、精确率、召回率和F1-score等指标对三种算法的性能进行评估和对比,选取性能最优的算法进行情绪识别。

支持向量机(SVM)的分类函数 分类函数:

线性判别分析(LDA)的分类函数 分类函数:

决策树的分类函数。

分类函数采用多个决策节点和叶子节点组成的树结构,每个节点通过阈值判断输入特征是否满足条件,并决定下一步的判断方向。

基于机器学习的情绪识别算法,通过对比SVM、LDA和决策树在情绪识别任务上的性能,选取最优的算法进行情绪识别。该算法可用于文本、语音和图像等情感数据的分类和识别,具有较好的通用性和适用性。在实际应用中,可以根据具体情况对算法进行参数调优,进一步提高情绪识别性能和效率。通过不断优化和改进,该算法有望在情感分析领域取得更好的成果。

2.部分核心程序

复制代码
.........................................................

% 从Excel文件'Atrain.xlsx'中读取全部训练数据
[S1]    = xlsread('Atrain.xlsx','Sheet3');% 全部训练数据的特征
[~,em1] = xlsread('Atrain.xlsx','Sheet3','N2:N141');% 全部训练数据的真实标签
Xnew3   = S1(1:end,1:13);

% 使用训练好的SVM分类器对待分类数据进行预测

label  = predict(svmStruct,Xnew);   % 预测结果
label3 = predict(svmStruct,Xnew3);  % 对全部训练数据进行预测
% 计算分类准确率
e=0;
.......................................................
 
 % 生成一组坐标点
 [x1,y1,z1]      = meshgrid(0:0.1:8,0:0.1:8,0:0.1:8);
 x1 = x1(:);
 y1 = y1(:);
 z1 = z1(:);
 
 xdata1 = T(1:140,11:13);
 svmStruct1 = fitcecoc(xdata1,group);
 label1 = predict(svmStruct1,[x1 y1 z1]);% 对一组坐标点进行预测
% 绘制不同情感区域的图像
 figure;
 gscatter(x1,y1,label1,'mrgb','.*o');
 title('不同情绪的区域');

% 绘制分类结果
figure;
hold on;
gscatter(T(1:140,1), T(1:140,2),id,'krgb','s*o');% 绘制训练数据的散点图
gscatter(Xnew(:,1),Xnew(:,2),label,'krgb','X');% 绘制测试数据的分类结果
title('训练和测试点情绪分类');
hold off 
temp=0;
0026

3.算法运行软件版本

MATLAB2022a

4.算法运行效果图预览

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
人邮异步社区1 小时前
PRML为何是机器学习的经典书籍中的经典?
人工智能·机器学习
xiangzhihong81 小时前
使用 Trae IDE 一键将 Figma 转为前端代码
机器学习
Coding茶水间2 小时前
基于深度学习的反光衣检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
露临霜2 小时前
重启机器学习
人工智能·机器学习
CappuccinoRose3 小时前
均值向量的检验
机器学习·均值向量·均值向量的检验·多元均值向量的检验
数据科学项目实践4 小时前
建模步骤 3 :数据探索(EDA) — 1、初步了解数据:常用函数
人工智能·python·机器学习·数据挖掘·数据分析·pandas·数据可视化
明月照山海-5 小时前
机器学习周报二十六
人工智能·机器学习·计算机视觉
Master_oid6 小时前
机器学习25:了解领域自适应(Domain Adaptation)
人工智能·深度学习·机器学习
陈天伟教授6 小时前
人工智能应用-机器视觉:车牌识别(2)
人工智能·神经网络·机器学习
周杰伦_Jay7 小时前
【BGE-M3与主流RAG嵌入模型】知识库嵌入模型对比
人工智能·机器学习·eureka·开源·github