NLP masked_tokens[]、token_masks[]是什么?

1、masked_tokens[]、token_masks[]介绍

masked_tokenstoken_masks两个列表用于存储mask处理后的token(分词)结果和对应的mask标志。

  • masked_tokens列表存储经过mask处理后的分词结果。

  • token_masks列表存储与每个分词结果对应的mask标志。

2、示例说明:

例如一个 masked_tokens[0]是:

'C', 'N', '\[C@H\]', '(', 'c', '1', 'c', 'c', '(', 'Br', ')', 'c', 'c', 'c', '1', 'F', ')', '**\**', '(', **'\', '\', '\'**, 'C', '1'

token_masks[0]是:

False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, **True**, False, **True, True, True**, False, False

它们的长度都是28

3、代码示例:

下面代码就是先对句子进行了token处理,然后进行了mask处理:

python 复制代码
# 通过正则匹配对第一个句子(sents1)进行分词,得到tokens。
tokens = self._regex_match(sents1)
# 对tokens进行mask处理
m_tokens, token_masks = self._mask_tokens(tokens, empty_mask=mask)

4、mask的类型

span mask

python 复制代码
    def _mask_span(self, ts):
        curr_token = 0
        masked = []
        token_mask = []

        mask_bools = [True, False]
        weights = [self.mask_prob, 1 - self.mask_prob]
        sampled_mask = random.choices(mask_bools, weights=weights, k=len(ts))

        while curr_token < len(ts):
            # If mask, sample from a poisson dist to get length of mask
            if sampled_mask[curr_token]:
                mask_len = torch.poisson(torch.tensor(self.span_lambda)).long().item()
                masked.append(self.mask_token)
                token_mask.append(True)
                curr_token += mask_len

            # Otherwise don't mask
            else:
                masked.append(ts[curr_token])
                token_mask.append(False)
                curr_token += 1

        return masked, token_mask

随机对某些位置进行mask,从泊松区取样得到mask的长度,mask前后序列的长度可能会发生变化

replace mask

python 复制代码
    def _mask_replace(self, ts):
        mask_bools = [True, False]
        weights = [self.mask_prob, 1 - self.mask_prob]
        token_mask = random.choices(mask_bools, weights=weights, k=len(ts))
        masked = [self._mask_token(ts[i]) if m else ts[i] for i, m in enumerate(token_mask)]
        return masked, token_mask

根据权重Weight随机对某些位置进行mask,mask前后序列的长度不会发生变化

权重Weight:例如,如果设定 self.mask_prob = 0.7,则掩码标记 True 的权重为 0.7,掩码标记 False 的权重为 0.3

相关推荐
byzh_rc几秒前
[机器学习-从入门到入土] 基础知识
人工智能·机器学习
无限大.1 分钟前
为什么游戏需要“加载时间“?——从硬盘读取到内存渲染
网络·人工智能·游戏
vibag4 分钟前
使用底层API构建图
人工智能·语言模型·langchain·大模型·langgraph
权泽谦8 分钟前
医疗预测项目:CNN + XGBoost 实战全流程
人工智能·神经网络·cnn
汗流浃背了吧,老弟!10 分钟前
Transformer-初识
人工智能·深度学习·transformer
Lkygo11 分钟前
Embedding 和 Reranker 模型
人工智能·embedding·vllm·sglang
竹君子13 分钟前
英伟达的AI芯片架构演进的三个阶段
人工智能
Chris_121913 分钟前
Halcon学习笔记-Day5
人工智能·笔记·python·学习·机器学习·halcon
蓝程序15 分钟前
Spring AI学习 程序接入大模型
java·人工智能·spring
西柚小萌新16 分钟前
【论文阅读】--PEACE:基于多模态大语言模型的地质图全息理解赋能框架
人工智能·语言模型·自然语言处理