NLP masked_tokens[]、token_masks[]是什么?

1、masked_tokens[]、token_masks[]介绍

masked_tokenstoken_masks两个列表用于存储mask处理后的token(分词)结果和对应的mask标志。

  • masked_tokens列表存储经过mask处理后的分词结果。

  • token_masks列表存储与每个分词结果对应的mask标志。

2、示例说明:

例如一个 masked_tokens[0]是:

'C', 'N', '\[C@H\]', '(', 'c', '1', 'c', 'c', '(', 'Br', ')', 'c', 'c', 'c', '1', 'F', ')', '**\**', '(', **'\', '\', '\'**, 'C', '1'

token_masks[0]是:

False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, **True**, False, **True, True, True**, False, False

它们的长度都是28

3、代码示例:

下面代码就是先对句子进行了token处理,然后进行了mask处理:

python 复制代码
# 通过正则匹配对第一个句子(sents1)进行分词,得到tokens。
tokens = self._regex_match(sents1)
# 对tokens进行mask处理
m_tokens, token_masks = self._mask_tokens(tokens, empty_mask=mask)

4、mask的类型

span mask

python 复制代码
    def _mask_span(self, ts):
        curr_token = 0
        masked = []
        token_mask = []

        mask_bools = [True, False]
        weights = [self.mask_prob, 1 - self.mask_prob]
        sampled_mask = random.choices(mask_bools, weights=weights, k=len(ts))

        while curr_token < len(ts):
            # If mask, sample from a poisson dist to get length of mask
            if sampled_mask[curr_token]:
                mask_len = torch.poisson(torch.tensor(self.span_lambda)).long().item()
                masked.append(self.mask_token)
                token_mask.append(True)
                curr_token += mask_len

            # Otherwise don't mask
            else:
                masked.append(ts[curr_token])
                token_mask.append(False)
                curr_token += 1

        return masked, token_mask

随机对某些位置进行mask,从泊松区取样得到mask的长度,mask前后序列的长度可能会发生变化

replace mask

python 复制代码
    def _mask_replace(self, ts):
        mask_bools = [True, False]
        weights = [self.mask_prob, 1 - self.mask_prob]
        token_mask = random.choices(mask_bools, weights=weights, k=len(ts))
        masked = [self._mask_token(ts[i]) if m else ts[i] for i, m in enumerate(token_mask)]
        return masked, token_mask

根据权重Weight随机对某些位置进行mask,mask前后序列的长度不会发生变化

权重Weight:例如,如果设定 self.mask_prob = 0.7,则掩码标记 True 的权重为 0.7,掩码标记 False 的权重为 0.3

相关推荐
CM莫问5 小时前
<论文>(微软)避免推荐域外物品:基于LLM的受限生成式推荐
人工智能·算法·大模型·推荐算法·受限生成
康谋自动驾驶6 小时前
康谋分享 | 自动驾驶仿真进入“标准时代”:aiSim全面对接ASAM OpenX
人工智能·科技·算法·机器学习·自动驾驶·汽车
深蓝学院7 小时前
密西根大学新作——LightEMMA:自动驾驶中轻量级端到端多模态模型
人工智能·机器学习·自动驾驶
归去_来兮7 小时前
人工神经网络(ANN)模型
人工智能·机器学习·人工神经网络
2201_754918417 小时前
深入理解卷积神经网络:从基础原理到实战应用
人工智能·神经网络·cnn
强盛小灵通专卖员8 小时前
DL00219-基于深度学习的水稻病害检测系统含源码
人工智能·深度学习·水稻病害
Luke Ewin8 小时前
CentOS7.9部署FunASR实时语音识别接口 | 部署商用级别实时语音识别接口FunASR
人工智能·语音识别·实时语音识别·商用级别实时语音识别
Joern-Lee8 小时前
初探机器学习与深度学习
人工智能·深度学习·机器学习
云卓SKYDROID8 小时前
无人机数据处理与特征提取技术分析!
人工智能·科技·无人机·科普·云卓科技
R²AIN SUITE9 小时前
金融合规革命:R²AIN SUITE 如何重塑银行业务智能
大数据·人工智能