NLP masked_tokens[]、token_masks[]是什么?

1、masked_tokens[]、token_masks[]介绍

masked_tokenstoken_masks两个列表用于存储mask处理后的token(分词)结果和对应的mask标志。

  • masked_tokens列表存储经过mask处理后的分词结果。

  • token_masks列表存储与每个分词结果对应的mask标志。

2、示例说明:

例如一个 masked_tokens[0]是:

'C', 'N', '\[C@H\]', '(', 'c', '1', 'c', 'c', '(', 'Br', ')', 'c', 'c', 'c', '1', 'F', ')', '**\**', '(', **'\', '\', '\'**, 'C', '1'

token_masks[0]是:

False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, **True**, False, **True, True, True**, False, False

它们的长度都是28

3、代码示例:

下面代码就是先对句子进行了token处理,然后进行了mask处理:

python 复制代码
# 通过正则匹配对第一个句子(sents1)进行分词,得到tokens。
tokens = self._regex_match(sents1)
# 对tokens进行mask处理
m_tokens, token_masks = self._mask_tokens(tokens, empty_mask=mask)

4、mask的类型

span mask

python 复制代码
    def _mask_span(self, ts):
        curr_token = 0
        masked = []
        token_mask = []

        mask_bools = [True, False]
        weights = [self.mask_prob, 1 - self.mask_prob]
        sampled_mask = random.choices(mask_bools, weights=weights, k=len(ts))

        while curr_token < len(ts):
            # If mask, sample from a poisson dist to get length of mask
            if sampled_mask[curr_token]:
                mask_len = torch.poisson(torch.tensor(self.span_lambda)).long().item()
                masked.append(self.mask_token)
                token_mask.append(True)
                curr_token += mask_len

            # Otherwise don't mask
            else:
                masked.append(ts[curr_token])
                token_mask.append(False)
                curr_token += 1

        return masked, token_mask

随机对某些位置进行mask,从泊松区取样得到mask的长度,mask前后序列的长度可能会发生变化

replace mask

python 复制代码
    def _mask_replace(self, ts):
        mask_bools = [True, False]
        weights = [self.mask_prob, 1 - self.mask_prob]
        token_mask = random.choices(mask_bools, weights=weights, k=len(ts))
        masked = [self._mask_token(ts[i]) if m else ts[i] for i, m in enumerate(token_mask)]
        return masked, token_mask

根据权重Weight随机对某些位置进行mask,mask前后序列的长度不会发生变化

权重Weight:例如,如果设定 self.mask_prob = 0.7,则掩码标记 True 的权重为 0.7,掩码标记 False 的权重为 0.3

相关推荐
老蒋新思维3 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
大刘讲IT3 小时前
面向中小企业的企业AI Agent未来3年构建蓝图规划
人工智能·经验分享·ai·开源·制造
yzx9910133 小时前
深度学习的进化之路:从感知机到通用智能的曙光
人工智能·深度学习
是开心的栗子呀3 小时前
阿里云天池:预测二手车交易价格的机器学习项目-高效实现MAE低于500分
人工智能·机器学习·阿里云·ai·云计算
智算菩萨3 小时前
走向场景,走向融合:2025年末国产大模型的平台化竞赛与Agent新范式
人工智能·语言模型·aigc
KAI智习3 小时前
一张图看懂AI Agent的6种模式—MAS
人工智能·agent·多智能体·mas
玩转单片机与嵌入式4 小时前
在STM32F103单片机上跑通AI模型:为什么选正弦波作为Hello World?
人工智能·stm32·单片机
闲谈共视4 小时前
基于去中心化社交与AI智能服务的Web钱包商业开发的可行性
前端·人工智能·去中心化·区块链
老马啸西风4 小时前
成熟企业级技术平台-10-跳板机 / 堡垒机(Bastion Host)详解
人工智能·深度学习·算法·职场和发展
c#上位机4 小时前
halcon求区域交集——intersection
图像处理·人工智能·计算机视觉·c#·halcon