NLP masked_tokens[]、token_masks[]是什么?

1、masked_tokens[]、token_masks[]介绍

masked_tokenstoken_masks两个列表用于存储mask处理后的token(分词)结果和对应的mask标志。

  • masked_tokens列表存储经过mask处理后的分词结果。

  • token_masks列表存储与每个分词结果对应的mask标志。

2、示例说明:

例如一个 masked_tokens[0]是:

'C', 'N', '\[C@H\]', '(', 'c', '1', 'c', 'c', '(', 'Br', ')', 'c', 'c', 'c', '1', 'F', ')', '**\**', '(', **'\', '\', '\'**, 'C', '1'

token_masks[0]是:

False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, **True**, False, **True, True, True**, False, False

它们的长度都是28

3、代码示例:

下面代码就是先对句子进行了token处理,然后进行了mask处理:

python 复制代码
# 通过正则匹配对第一个句子(sents1)进行分词,得到tokens。
tokens = self._regex_match(sents1)
# 对tokens进行mask处理
m_tokens, token_masks = self._mask_tokens(tokens, empty_mask=mask)

4、mask的类型

span mask

python 复制代码
    def _mask_span(self, ts):
        curr_token = 0
        masked = []
        token_mask = []

        mask_bools = [True, False]
        weights = [self.mask_prob, 1 - self.mask_prob]
        sampled_mask = random.choices(mask_bools, weights=weights, k=len(ts))

        while curr_token < len(ts):
            # If mask, sample from a poisson dist to get length of mask
            if sampled_mask[curr_token]:
                mask_len = torch.poisson(torch.tensor(self.span_lambda)).long().item()
                masked.append(self.mask_token)
                token_mask.append(True)
                curr_token += mask_len

            # Otherwise don't mask
            else:
                masked.append(ts[curr_token])
                token_mask.append(False)
                curr_token += 1

        return masked, token_mask

随机对某些位置进行mask,从泊松区取样得到mask的长度,mask前后序列的长度可能会发生变化

replace mask

python 复制代码
    def _mask_replace(self, ts):
        mask_bools = [True, False]
        weights = [self.mask_prob, 1 - self.mask_prob]
        token_mask = random.choices(mask_bools, weights=weights, k=len(ts))
        masked = [self._mask_token(ts[i]) if m else ts[i] for i, m in enumerate(token_mask)]
        return masked, token_mask

根据权重Weight随机对某些位置进行mask,mask前后序列的长度不会发生变化

权重Weight:例如,如果设定 self.mask_prob = 0.7,则掩码标记 True 的权重为 0.7,掩码标记 False 的权重为 0.3

相关推荐
沃达德软件1 天前
人工智能治安管控系统
图像处理·人工智能·深度学习·目标检测·计算机视觉·目标跟踪·视觉检测
高工智能汽车1 天前
爱芯元智通过港交所聆讯,智能汽车芯片市场格局加速重构
人工智能·重构·汽车
大力财经1 天前
悬架、底盘、制动被同时重构,星空计划想把“驾驶”变成一种系统能力
人工智能
梁下轻语的秋缘1 天前
Prompt工程核心指南:从入门到精通,让AI精准响应你的需求
大数据·人工智能·prompt
FreeBuf_1 天前
ChatGPT引用马斯克AI生成的Grokipedia是否陷入“内容陷阱“?
人工智能·chatgpt
福客AI智能客服1 天前
工单智转:电商智能客服与客服AI系统重构售后服务效率
大数据·人工智能
柳鲲鹏1 天前
OpenCV:超分辨率、超采样及测试性能
人工智能·opencv·计算机视觉
逄逄不是胖胖1 天前
《动手学深度学习》-54循环神经网络RNN
人工智能·深度学习
AIGC合规助手1 天前
AI智能硬件I万亿市场预测+算法、大模型备案合规手册
大数据·人工智能·智能硬件
物联网APP开发从业者1 天前
2026年AI智能硬件集成开发十大平台技术场景深度解析
人工智能·智能硬件