动手学深度学习——线性回归从零开始

  1. 生成数据集synthetic_data()
  2. 读取数据集data_iter()
  3. 初始化模型参数w, b
  4. 定义模型:线性回归模型linreg()
  5. 定义损失函数:均方损失squared_loss()
  6. 定义优化算法:梯度下降sgd()
  7. 进行训练:输出损失loss和估计误差
python 复制代码
%matplotlib inline
import random
import torch
from d2l import torch as d2l

# 生成数据集
def synthetic_data(w, b, num_examples): #@save
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape(-1, 1)

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)


# 读取数据集
def data_iter(batch_size, features, labels):
    # 获取x中特征的长度,转换成列表,通过for循环进行批量生成
    num_examples = len(features)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        # 此时获取的是向量了,最后如果不足批量大小取最后剩余的
        batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]


# 初始化模型参数
w = torch.normal(0, 0.01, size=(2, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)


# 定义模型:线性回归模型
def linreg(X, w, b):
    return torch.matmul(X, w) + b


# 定义优化算法sgd
# lr:学习率
def sgd(params, lr, batch_size):
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()


"""
    训练:
    1、读取批量样本获取预测
    2、计算损失,反向传播,存储每个参数的梯度
    3、调用优化算法sgd来更新模型参数
    4、输出每轮的损失
"""
lr = 0.03
num_epochs = 10
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        # X和y的小批量损失
        # net()返回y=X*w+b,loss()返回(y'-y)^2/2
        l = loss(net(X, w, b), y)\
        
        # 因为l形状是(batch_size, 1),而不是一个标量。L中的所有元素被加到一起
        # 并以此计算关于[w, b]的梯度
        l.sum().backward()
        
        # sgd():w = w - lr*w/batch_size
        # 使用参数的梯度更新参数
        sgd([w, b], lr, batch_size)
    with torch.no_grad():
        # loss(y_hat, y)
        # net(features, w, b)相当于y_hat,labels相当于y
        train_1 = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss{float(train_1.mean()):f}')


# 输出w和b的估计误差
print(f'w的估计误差:{true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差:{true_b - b}')
相关推荐
苏苏susuus3 小时前
机器学习:load_predict_project
人工智能·机器学习
科技小E3 小时前
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
人工智能·安全·智能手机
猿饵块4 小时前
视觉slam--框架
人工智能
yvestine5 小时前
自然语言处理——Transformer
人工智能·深度学习·自然语言处理·transformer
SuperW6 小时前
OPENCV图形计算面积、弧长API讲解(1)
人工智能·opencv·计算机视觉
山海不说话6 小时前
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
人工智能·python·计算机视觉·视觉检测
虹科数字化与AR7 小时前
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
人工智能·ar·ar眼镜·船舶智造·数字工作流·智能装配
飞哥数智坊8 小时前
Coze实战第13讲:飞书多维表格读取+豆包生图模型,轻松批量生成短剧封面
人工智能
newxtc9 小时前
【配置 YOLOX 用于按目录分类的图片数据集】
人工智能·目标跟踪·分类