自然语言处理从入门到应用——LangChain:模型(Models)-[文本嵌入模型Ⅰ]

分类目录:《自然语言处理从入门到应用》总目录


本文将介绍如何在LangChain中使用Embedding类。Embedding类是一种与嵌入交互的类。有很多嵌入提供商,如:OpenAI、Cohere、Hugging Face等,这个类旨在为所有这些提供一个标准接口。

嵌入创建文本的向量表示会很有用,因为这意味着我们可以在向量空间中表示文本,并执行类似语义搜索这样的操作。LangChain中的基本Embedding类公开两种方法:

  • embed_documents:适用于多个文档
  • embed_query:适用于单个文档

将这两种方法作为两种不同的方法的另一个原因是一些嵌入提供商对于需要搜索的文档和查询(搜索查询本身)具有不同的嵌入方法,下面是文本嵌入的集成示例:

Aleph Alpha

使用Aleph Alpha的语义嵌入有两种可能的方法。如果我们有不同结构的文本(例如文档和查询),则我们使用非对称嵌入。相反,对于具有可比结构的文本,则建议使用对称嵌入的方法:

非对称
dart 复制代码
from langchain.embeddings import AlephAlphaAsymmetricSemanticEmbedding
document = "This is a content of the document"
query = "What is the content of the document?"
embeddings = AlephAlphaAsymmetricSemanticEmbedding()
doc_result = embeddings.embed_documents([document])
query_result = embeddings.embed_query(query)
对称
dart 复制代码
from langchain.embeddings import AlephAlphaSymmetricSemanticEmbedding
text = "This is a test text"
embeddings = AlephAlphaSymmetricSemanticEmbedding()
doc_result = embeddings.embed_documents([text])
query_result = embeddings.embed_query(text)

Amazon Bedrock

Amazon Bedrock是一个完全托管的服务,通过API提供了来自领先AI初创公司和亚马逊的FMs,因此您可以从广泛的FMs中选择最适合您的用例的模型。

dart 复制代码
%pip install boto3
from langchain.embeddings import BedrockEmbeddings

embeddings = BedrockEmbeddings(credentials_profile_name="bedrock-admin")
embeddings.embed_query("This is a content of the document")
embeddings.embed_documents(["This is a content of the document"])

Azure OpenAI

我们加载OpenAI Embedding类,并设置环境变量以指示使用Azure端点。

dart 复制代码
# 设置用于 OpenAI 包的环境变量,以指示使用 Azure 端点
import os

os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
from langchain.embeddings import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(deployment="your-embeddings-deployment-name")
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])

Cohere

我们加载Cohere Embedding类:

dart 复制代码
from langchain.embeddings import CohereEmbeddings
embeddings = CohereEmbeddings(cohere_api_key=cohere_api_key)
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])

DashScope

我们加载DashScope嵌入类:

dart 复制代码
from langchain.embeddings import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(model='text-embedding-v1', dashscope_api_key='your-dashscope-api-key')
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(query_result)
doc_results = embeddings.embed_documents(["foo"])
print(doc_results)

DashScope

我们加载DashScope嵌入类:

dart 复制代码
from langchain.embeddings import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(model='text-embedding-v1', dashscope_api_key='your-dashscope-api-key')
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(query_result)
doc_results = embeddings.embed_documents(["foo"])
print(doc_results)

Elasticsearch

使用Elasticsearch中托管的嵌入模型生成嵌入的操作步骤。通过下面的方式,可以很容易地实例化ElasticsearchEmbeddings类。如果我们使用的是Elastic Cloud,则可以使用from_credentials构造函数,如果我们使用的是Elasticsearch集群,则可以使用from_es_connection构造函数:

dart 复制代码
!pip -q install elasticsearch langchain
dart 复制代码
import elasticsearch
from langchain.embeddings.elasticsearch import ElasticsearchEmbeddings
# 定义模型 ID
model_id = 'your_model_id'

如果我们希望使用from_credentials进行测试,那么我们需要Elastic Cloud的cloud_id:

dart 复制代码
# 使用凭据实例化 ElasticsearchEmbeddings
embeddings = ElasticsearchEmbeddings.from_credentials(
    model_id,
    es_cloud_id='your_cloud_id', 
    es_user='your_user', 
    es_password='your_password'
)

# 为多个文档创建嵌入
documents = [
    'This is an example document.', 
    'Another example document to generate embeddings for.'
]
document_embeddings = embeddings.embed_documents(documents)

# 打印文档嵌入
for i, embedding in enumerate(document_embeddings):
    print(f"文档 {i+1} 的嵌入:{embedding}")

# 为单个查询创建嵌入
query = 'This is a single query.'
query_embedding = embeddings.embed_query(query)

# 打印查询嵌入
print(f"查询的嵌入:{query_embedding}")

同时,我们可以使用现有的Elasticsearch客户端连接进行测试,这可用于任何Elasticsearch部署:

dart 复制代码
# 创建 Elasticsearch 连接
es_connection = Elasticsearch(
    hosts=['https://es_cluster_url:port'], 
    basic_auth=('user', 'password')
)
# 使用 es_connection 实例化 ElasticsearchEmbeddings
embeddings = ElasticsearchEmbeddings.from_es_connection(
  model_id,
  es_connection,
)
# 为多个文档创建嵌入
documents = [
    'This is an example document.', 
    'Another example document to generate embeddings for.'
]
document_embeddings = embeddings.embed_documents(documents)

# 打印文档嵌入
for i, embedding in enumerate(document_embeddings):
    print(f"文档 {i+1} 的嵌入:{embedding}")

# 为单个查询创建嵌入
query = 'This is a single query.'
query_embedding = embeddings.embed_query(query)

# 打印查询嵌入
print(f"查询的嵌入:{query_embedding}")

参考文献:

1\] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/ \[2\] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

相关推荐
仗剑_走天涯42 分钟前
基于pytorch.nn模块实现线性模型
人工智能·pytorch·python·深度学习
cnbestec2 小时前
协作机器人UR7e与UR12e:轻量化设计与高负载能力助力“小而美”智造升级
人工智能·机器人·协作机器人·ur协作机器人·ur7e·ur12e
zskj_zhyl2 小时前
毫米波雷达守护银发安全:七彩喜跌倒检测仪重构居家养老防线
人工智能·安全·重构
gaosushexiangji3 小时前
利用sCMOS科学相机测量激光散射强度
大数据·人工智能·数码相机·计算机视觉
ai小鬼头4 小时前
AIStarter新版重磅来袭!永久订阅限时福利抢先看
人工智能·开源·github
说私域4 小时前
从品牌附庸到自我表达:定制开发开源AI智能名片S2B2C商城小程序赋能下的营销变革
人工智能·小程序
飞哥数智坊5 小时前
新版定价不够用,Cursor如何退回旧版定价
人工智能·cursor
12点一刻5 小时前
搭建自动化工作流:探寻解放双手的有效方案(2)
运维·人工智能·自动化·deepseek
未来之窗软件服务5 小时前
东方仙盟AI数据中间件使用教程:开启数据交互与自动化应用新时代——仙盟创梦IDE
运维·人工智能·自动化·仙盟创梦ide·东方仙盟·阿雪技术观
JNU freshman6 小时前
计算机视觉速成 之 概述
人工智能·计算机视觉