特征 降维

1、概述

用于训练的数据集特征对模型的性能有着极其重要的作用,如果训练数据中包含一些不重要的特征,可能导致模型的泛化性能不佳。

降维--是指在某些限定条件下,降低特征个数。

2、方法

低方差过滤法

  • 如果一个特征的方差很小,说明这个特征包含的信息很少,模型很难通过该特征区分对象

相关系数法

  • 通过计算特征的相关系数,发现具有相关性的特征,根据相关性的强弱,进行特征的选择。
  • 皮尔逊相关系数
  • 斯皮尔曼相关系数

PCA(主成分分析法)降维法

  • 在保留大部分信息的前提下,将数据的维度压缩为低维,在降维过程中能够去除特征之间的相关性

2、低方差过滤法

  • 特征方差大:某个特征很多样本的值都有差别
  • 特征方差小:某个特征大多数样本的值都比较接近

低方差过滤------删除方差低于某些阈值的一些特征

python 复制代码
sklearn.feature_selection.VarianceThreshold(threshold=0.0)
Variance.fit_transform(X)
# X是numpy array 格式的数据【n_samples,n_features)

在数据集中,删除方差低于threshold的特征,默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征。

3、相关系数法

两两变量之间计算相关性,越接近于1,越相关。

皮尔逊相关系数的计算公式:

  • from scipy.stats import pearsonr

斯皮尔曼相关系数:

  • from scipy.stats import spearmanr

上面公式中,di为样本中不同特征在数据中排序的序号差值(相同时就取排序的均值),计算举例如下所示:

python 复制代码
import pandas as pd
from sklearn.feature_selection import VarianceThreshold
from scipy.stats import pearsonr
from scipy.stats import spearmanr
from sklearn.datasets import load_iris
import pandas as pd

pd.set_option('display.max_columns',None)
pd.set_option('display.max_rows',None)
pd.set_option('display.width',1000)

if __name__=='__main__':
    # 读取数据集
    data = load_iris()
    data = pd.DataFrame(data.data, columns=data.feature_names)
    
    #皮尔逊相关系数
    p_corr = pearsonr(data['sepal length (cm)'],data['sepal width (cm)'])
    print(p_corr,'皮尔逊相关系数:',p_corr[0],'不相关概率:',p_corr[1])

    #斯皮尔曼相关系数
    s_corr = spearmanr(data['sepal length (cm)'],data['sepal width (cm)'])
    print(s_corr,'皮尔逊相关系数:',s_corr[0],'不相关概率:',s_corr[1])

    #使用DataFrame的corr方法计算相关性
    print(data.corr('pearson'))
    print(data.corr('spearman'))

4、主成分分析PCA

通过对数据维数进行压缩,尽可能降低原数据的维数(复杂度),损失少量信息,在此过程中可能会舍弃原有数据、创造新的变量。

python 复制代码
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris

if __name__ == '__main__':
    #加载数据集
    x,y = load_iris(return_X_y=True)
    print(x[:5])

    # 指定保留信息的比例
    transformer = PCA(n_components=0.95)
    x_pca = transformer.fit_transform(x)    
    print(x_pca[:5])

    # 另一种方法,保留指定数量的特征
    transformer = PCA(n_components=3)
    x_pca = transformer.fit_transform(x)
    print(x_pca[:5])
相关推荐
ar01231 小时前
AR远程协助作用
人工智能·ar
北京青翼科技1 小时前
PCIe接口-高速模拟采集—高性能计算卡-青翼科技高品质军工级数据采集板-打造专业工业核心板
图像处理·人工智能·fpga开发·信号处理·智能硬件
软件聚导航2 小时前
马年、我用AI写了个“打工了马” 小程序
人工智能·ui·微信小程序
陈天伟教授3 小时前
人工智能应用-机器听觉:7. 统计合成法
人工智能·语音识别
笨蛋不要掉眼泪3 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
昨夜见军贴06163 小时前
IACheck AI审核技术赋能消费认证:为智能宠物喂食器TELEC报告构筑智能合规防线
人工智能·宠物
DisonTangor3 小时前
阿里开源语音识别模型——Qwen3-ASR
人工智能·开源·语音识别
万事ONES4 小时前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
qyr67894 小时前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养
软件开发技术深度爱好者4 小时前
浅谈人工智能(AI)对个人发展的影响
人工智能