CNN(卷积神经网络)的实现过程详解


概要

在图像处理领域,CNN(卷积神经网络)处于绝对统治地位,但对于CNN具体是如何用神经网络实现的,能找到的介绍要么是一大堆数学公式,要么是大段晦涩的文字说明,读起来很是辛苦,想写好一片完整的而且有深度的文章出来非常难,所以本文适合入门的朋友对CNN的学习和了解。

CNN主要思路快速回顾

为了便于大家理解,这里简单回顾一下CNN的主要思路:对于一张M * N像素的图,我们用一个大小为 S * S(如3 * 3)的特征提取器,扫描整个图片,强化图片的重要特征,忽略不重要的细节,得到一个强化了特征的新图:

不断递归上述过程,就可以逐渐从细节特征(如线条、纹理)中提取出高级特征(如器官、物种),最终完成各种图像处理任务。

图解CNN的神经网络实现过程

假设我们有一张3 * 3的图,图中每个像素用一个字母表示:

我们的特征提取器为一个2 * 2的矩阵,矩阵每个元素是一个希腊字母:

用特征提取器处理后的图片为:

其详细工作过程如下:

上述工作过程可以表达为以下等式:

注意上述等式中的bias参数b在4个等式中都是一样的,可以把b理解为特征提取器的一部分,就像权重参数(α, β, γ, δ)是特征提取器的一部分一样。

上述等式更紧凑的写法为:

上述写法可以直接表示为一个神经网络(连接线对应权重α, β, γ, δ):

神经元的激活过程就是权重矩阵和输入矩阵的乘积:

这里有两个要注意的点:

  • 灰色格子的0,代表不可训练的参数,它们在整个训练过程中始终为0

  • 剩下可训练的参数中,很多参数取值是保持相同的,这叫做"共享权重"

权重矩阵的每一行,代表了在图片上对特征过滤器的一次应用,其中的0表示这次应用不会覆盖的像素。

假设我们把取值为0的权重也补充到上面的神经网络图中(用灰色的线表示0权重),就可以得到一个经典的、全连接的神经网络图:

去掉颜色和字母,就和熟悉的神经网络示意图一模一样了:

上面,我们用一个2 * 2的特征提取器把一个3 * 3的图变成了一个2 * 2的图,通过zero-padding和一个3 * 3的特征提取器,我们就可以保持图片大小不变:

其工作过程如下:

而如果不应用zero-padding,则我们只能得到一个1 * 1的结果图:

以上就是CNN落地实现为神经网络的过程,欢迎大家阅读,感谢🙏。

相关推荐
智驱力人工智能2 分钟前
高密爆炸警钟长鸣:AI为化工安全戴上“智能护盾”
人工智能·算法·安全·重构·边缘计算·高密爆炸·高密化工厂
元闰子13 分钟前
AI Agent需要什么样的数据库?
数据库·人工智能·后端
蚂蚁数据AntData14 分钟前
⼤模型驱动的DeepInsight Copilot在蚂蚁的技术实践
大数据·人工智能·数据分析·copilot·数据库架构
LeonDL16816 分钟前
HALCON 深度学习训练 3D 图像的几种方式优缺点
人工智能·python·深度学习·3d·halcon·halcon训练3d图像·深度学习训练3d图像
jmsail17 分钟前
Dynamics 365 Business Central AI Sales Order Agent Copilot
人工智能·microsoft·copilot·dynamics 365·d365 bc erp
要养家的程序猿32 分钟前
RagFlow优化&代码解析(一)
人工智能·ai
凯禾瑞华现代家政1 小时前
适老化场景重构:现代家政老年照护虚拟仿真实训室建设方案
人工智能·系统架构·虚拟现实
Wnq100721 小时前
通用人工智能 (AGI): 定义、挑战与未来展望
人工智能·agi
宋一诺331 小时前
机器学习——放回抽样
人工智能·机器学习