CNN(卷积神经网络)的实现过程详解


概要

在图像处理领域,CNN(卷积神经网络)处于绝对统治地位,但对于CNN具体是如何用神经网络实现的,能找到的介绍要么是一大堆数学公式,要么是大段晦涩的文字说明,读起来很是辛苦,想写好一片完整的而且有深度的文章出来非常难,所以本文适合入门的朋友对CNN的学习和了解。

CNN主要思路快速回顾

为了便于大家理解,这里简单回顾一下CNN的主要思路:对于一张M * N像素的图,我们用一个大小为 S * S(如3 * 3)的特征提取器,扫描整个图片,强化图片的重要特征,忽略不重要的细节,得到一个强化了特征的新图:

不断递归上述过程,就可以逐渐从细节特征(如线条、纹理)中提取出高级特征(如器官、物种),最终完成各种图像处理任务。

图解CNN的神经网络实现过程

假设我们有一张3 * 3的图,图中每个像素用一个字母表示:

我们的特征提取器为一个2 * 2的矩阵,矩阵每个元素是一个希腊字母:

用特征提取器处理后的图片为:

其详细工作过程如下:

上述工作过程可以表达为以下等式:

注意上述等式中的bias参数b在4个等式中都是一样的,可以把b理解为特征提取器的一部分,就像权重参数(α, β, γ, δ)是特征提取器的一部分一样。

上述等式更紧凑的写法为:

上述写法可以直接表示为一个神经网络(连接线对应权重α, β, γ, δ):

神经元的激活过程就是权重矩阵和输入矩阵的乘积:

这里有两个要注意的点:

  • 灰色格子的0,代表不可训练的参数,它们在整个训练过程中始终为0

  • 剩下可训练的参数中,很多参数取值是保持相同的,这叫做"共享权重"

权重矩阵的每一行,代表了在图片上对特征过滤器的一次应用,其中的0表示这次应用不会覆盖的像素。

假设我们把取值为0的权重也补充到上面的神经网络图中(用灰色的线表示0权重),就可以得到一个经典的、全连接的神经网络图:

去掉颜色和字母,就和熟悉的神经网络示意图一模一样了:

上面,我们用一个2 * 2的特征提取器把一个3 * 3的图变成了一个2 * 2的图,通过zero-padding和一个3 * 3的特征提取器,我们就可以保持图片大小不变:

其工作过程如下:

而如果不应用zero-padding,则我们只能得到一个1 * 1的结果图:

以上就是CNN落地实现为神经网络的过程,欢迎大家阅读,感谢🙏。

相关推荐
skywalk816318 分钟前
windows下安装使用comfy
人工智能
天云数据24 分钟前
年末回顾:从鹦鹉到乌鸦,天云数据2025智能进化与产业深耕
人工智能
肾透侧视攻城狮31 分钟前
《解锁TensorFlow NLP实战:一站式掌握文本预处理、向量化技术与情感分析管道最佳实践》
人工智能·深度学习·文本预处理·向量化文本·向量化模式选项·bert分词器·tf构建文本处理管道
Zzz 小生33 分钟前
LangChain Short-term memory:短期记忆使用完全指南
人工智能·python·langchain·github
hqyjzsb38 分钟前
非技术管理层推动企业AI转型的系统化实施策略
人工智能·跳槽·创业创新·学习方法·业界资讯·远程工作·程序员创富
智慧地球(AI·Earth)39 分钟前
在Windows上使用Claude Code并集成到PyCharm IDE的完整指南
ide·人工智能·windows·python·pycharm·claude code
莫生灬灬43 分钟前
Cloak 指纹浏览器 2.0 - 全网首个支持 AI 和 Skill 的指纹浏览器
人工智能
琅琊榜首20201 小时前
AI辅助小说转短剧:全流程实操与技术落地指南
人工智能
Katecat996631 小时前
【深度学习】Faster-RCNN改进:钩子状态识别与分类三种状态自动检测
人工智能·深度学习·分类
niuniudengdeng1 小时前
一种基于HFF4材料的自消亡类脑芯片架构构想:把神经网络的训练变成物理化学过程
人工智能·神经网络·算法