pytorch学习-线性神经网络——softmax回归+损失函数+图片分类数据集

1.softmax回归

Softmax回归(Softmax Regression)是一种常见的多分类模型,可以用于将输入变量映射到多个类别的概率分布中。softmax回归是机器学习中非常重要并且经典的模型,虽然叫回归,实际上是一个分类问题

1.1分类与回归

回归是估计一个连续值,分类是预测一个连续的类别

示例:

1.2从回归到多类分类

区别:分类问题从单输出变成了多输出,输出个数为类别个数

注:类别可能是一个数,也可能是一串字符串(例如A类,1类等)

一位有效编码:规定的在一个位置上,其值为0或者1,1表示有效,0表示无效,有效的那一位为1,其余位全为0。

1.2.1无校验比例

不关心置信度的值是多少,只关心正确类别的置信度的值要远远高于其他非正确类的置信度。

1.2.2校验比例

1.2.3softmax和交叉熵损失

注:一般来说使用真实概率与预测概率的区别来作为损失

不关心非正确类的预测值,只关心正确类的预测值有多大

1.2.4总结

softmax回归是一个多分类分类模型

使用softmax操作得到每个类的预测置信概率,非负且和为1

2.损失函数

损失函数------用来衡量预测值和真实值之间的区别。

2.1常用损失函数

2.1.1 L2 Loss(均方损失)

注:当y和y' 相距比较远(横轴到零点的距离越远),梯度越大,对参数的更新越多,更新的幅度越大,反之亦然。

2.1.2 L1 Loss(绝对值损失函数)

2.1.3 Huber's Robust Loss(Huber 鲁棒损失)

3.图片分类数据集

实际操作和代码见链接

3.5. 图像分类数据集 --- 动手学深度学习 2.0.0 documentation

相关推荐
知识分享小能手14 小时前
Oracle 19c入门学习教程,从入门到精通,Oracle管理工具 —— 知识点详解(3)
数据库·学习·oracle
科技林总14 小时前
【系统分析师】4.1 计算机网络基础
学习
天天睡大觉14 小时前
Python学习9
开发语言·python·学习
2301_7973122614 小时前
学习Java39天
开发语言·python·学习
Reenrr14 小时前
C++学习
开发语言·c++·学习
望忆14 小时前
关于《SaviorRec: Semantic-Behavior Alignment for Cold-StartRecommendation》的学习
学习
抠头专注python环境配置14 小时前
2026终极诊断指南:解决Windows PyTorch GPU安装失败,从迷茫到确定
人工智能·pytorch·windows·深度学习·gpu·环境配置·cuda
进阶小白猿14 小时前
Java技术八股学习Day18
java·开发语言·学习
丝斯201114 小时前
AI学习笔记整理(49)——大模型应用开发框架:LangChain
人工智能·笔记·学习
saoys14 小时前
Opencv 学习笔记:循环读取文件夹中图片并动态展示
笔记·opencv·学习