pytorch学习-线性神经网络——softmax回归+损失函数+图片分类数据集

1.softmax回归

Softmax回归(Softmax Regression)是一种常见的多分类模型,可以用于将输入变量映射到多个类别的概率分布中。softmax回归是机器学习中非常重要并且经典的模型,虽然叫回归,实际上是一个分类问题

1.1分类与回归

回归是估计一个连续值,分类是预测一个连续的类别

示例:

1.2从回归到多类分类

区别:分类问题从单输出变成了多输出,输出个数为类别个数

注:类别可能是一个数,也可能是一串字符串(例如A类,1类等)

一位有效编码:规定的在一个位置上,其值为0或者1,1表示有效,0表示无效,有效的那一位为1,其余位全为0。

1.2.1无校验比例

不关心置信度的值是多少,只关心正确类别的置信度的值要远远高于其他非正确类的置信度。

1.2.2校验比例

1.2.3softmax和交叉熵损失

注:一般来说使用真实概率与预测概率的区别来作为损失

不关心非正确类的预测值,只关心正确类的预测值有多大

1.2.4总结

softmax回归是一个多分类分类模型

使用softmax操作得到每个类的预测置信概率,非负且和为1

2.损失函数

损失函数------用来衡量预测值和真实值之间的区别。

2.1常用损失函数

2.1.1 L2 Loss(均方损失)

注:当y和y' 相距比较远(横轴到零点的距离越远),梯度越大,对参数的更新越多,更新的幅度越大,反之亦然。

2.1.2 L1 Loss(绝对值损失函数)

2.1.3 Huber's Robust Loss(Huber 鲁棒损失)

3.图片分类数据集

实际操作和代码见链接

3.5. 图像分类数据集 --- 动手学深度学习 2.0.0 documentation

相关推荐
map_vis_3d10 分钟前
JSAPIThree 加载简单点图层学习笔记:SimplePoint 散点可视化
笔记·学习·信息可视化·mapvthree·jsapithree·simplepoint·点图层
西瓜堆5 小时前
提示词工程学习笔记: 工程技术行业提示词推荐
笔记·学习
知乎的哥廷根数学学派5 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
知乎的哥廷根数学学派7 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
知乎的哥廷根数学学派8 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
charlie1145141918 小时前
嵌入式的现代C++教程——constexpr与设计技巧
开发语言·c++·笔记·单片机·学习·算法·嵌入式
好奇龙猫8 小时前
【AI学习-comfyUI学习-三十二节-FLXU原生态反推+controlnet depth(UNion)工作流-各个部分学习】
人工智能·学习
好奇龙猫9 小时前
【大学院-筆記試験練習:数据库(データベース問題訓練) と 软件工程(ソフトウェア)(7)】
学习
j_jiajia10 小时前
(一)人工智能算法之监督学习——KNN
人工智能·学习·算法
2301_7833601310 小时前
关于RNAseq——从fastq到gene_counts全流程
笔记·学习