深度学习之梯度下降算法

0.1 学习视频源于:b站:刘二大人《PyTorch深度学习实践》

0.2 本章内容为自主学习总结内容,若有错误欢迎指正!

1 线性模型

1.1 通过简单的线性模型来举例:

1.2 如图,简单的一个权重的线性模型,首先通过随机取w的值来找到与true line重合的w,其中通过MSE来判断w取值是否合理。(最简单的通过评价指标来判断模型的效果如何)

1.3 但是对于多个权重来说,搜索权重w的数量呈幂函数增长。此时可以想到分治方法,通过分治法减少首次搜索次数,找到MSE较小的点在进行一定区间范围内的权重w搜索。但是这种方法对于大部分的MSE曲线(不规则,非凸函数),会因为第一轮的分治取值不当导致错过最优点。

2 梯度下降

2.1 所以引入梯度下降算法寻找最小MSE值。

2.2 Q:什么是梯度?A:cost函数(本文为MSE)对权重求导。

2.3 梯度下降更新权重的方法:

(减去学习率×导数,是因为如果寻找的导数为负值,说明该区间曲线递减,则w向后取值即w数值增加;如果为正,说明该区间曲线递增,则w向前取值即w数值减少。学习率:一般取值不宜太大,其控制MSE曲线上所取的w的跨越程度,学习率取值太大容易导致cost函数发散。)

2.4 梯度下降为贪心算法,由于非凸函数存在多个最优点(局部最优),所以梯度下降算法很难找到全局最优,容易陷入局部最优点,但是在深度神经网络中并没有太多的局部最优点,即很难陷入局部最优,所以梯度下降算法依然被大量使用。同时梯度下降算法存在鞍点问题(梯度为0)。

2.5 可以通过指数加权均值平滑cost函数,这样更容易观察曲线趋势。

3 随机梯度下降

3.1 cost在本文中指MSE(所有样本的平均损失),而loss是指单个样本的损失。利用单个样本的loss函数之后增加了随机噪声,可以很大程度上解决鞍点问题。

3.2 梯度下降算法每个点的损失计算是可以并行的,但是随机梯度下降算法w的更新依赖于上次w更新的结果。所以梯度下降算法效率更高,随机梯度算法性能更好但是时间复杂度太高。

3.3 因此折中引入batch(mini-batch)(批量随机梯度下降)。随机梯度下降法(stochasticgradientdescent,SGD)算法默认使用批量随机梯度下降方法。

相关推荐
LO嘉嘉VE13 分钟前
学习笔记二十一:深度学习
笔记·深度学习·学习
kingmax5421200813 分钟前
图论核心算法(C++):包括存储结构、核心思路、速记口诀以及学习方法, 一站式上机考试学习【附PKU百练,相关练习题单】
c++·算法·图论·信奥赛·上机考试·百练·pku
罗湖老棍子16 分钟前
【例9.15】潜水员(信息学奥赛一本通- P1271)
c++·算法·动态规划·二维费用背包
_OP_CHEN20 分钟前
算法基础篇:(二十一)数据结构之单调栈:从原理到实战,玩转高效解题
数据结构·算法·蓝桥杯·单调栈·算法竞赛·acm/icpc
YJlio1 小时前
[编程达人挑战赛] 用 PowerShell 写了一个“电脑一键初始化脚本”:从混乱到可复制的开发环境
数据库·人工智能·电脑
RoboWizard1 小时前
PCIe 5.0 SSD有无独立缓存对性能影响大吗?Kingston FURY Renegade G5!
人工智能·缓存·电脑·金士顿
霍格沃兹测试开发学社-小明2 小时前
测试左移2.0:在开发周期前端筑起质量防线
前端·javascript·网络·人工智能·测试工具·easyui
懒麻蛇2 小时前
从矩阵相关到矩阵回归:曼特尔检验与 MRQAP
人工智能·线性代数·矩阵·数据挖掘·回归
q***51892 小时前
【语义分割】12个主流算法架构介绍、数据集推荐、总结、挑战和未来发展
算法·架构
xwill*2 小时前
RDT-1B: A DIFFUSION FOUNDATION MODEL FOR BIMANUAL MANIPULATION
人工智能·pytorch·python·深度学习