深度学习之梯度下降算法

0.1 学习视频源于:b站:刘二大人《PyTorch深度学习实践》

0.2 本章内容为自主学习总结内容,若有错误欢迎指正!

1 线性模型

1.1 通过简单的线性模型来举例:

1.2 如图,简单的一个权重的线性模型,首先通过随机取w的值来找到与true line重合的w,其中通过MSE来判断w取值是否合理。(最简单的通过评价指标来判断模型的效果如何)

1.3 但是对于多个权重来说,搜索权重w的数量呈幂函数增长。此时可以想到分治方法,通过分治法减少首次搜索次数,找到MSE较小的点在进行一定区间范围内的权重w搜索。但是这种方法对于大部分的MSE曲线(不规则,非凸函数),会因为第一轮的分治取值不当导致错过最优点。

2 梯度下降

2.1 所以引入梯度下降算法寻找最小MSE值。

2.2 Q:什么是梯度?A:cost函数(本文为MSE)对权重求导。

2.3 梯度下降更新权重的方法:

(减去学习率×导数,是因为如果寻找的导数为负值,说明该区间曲线递减,则w向后取值即w数值增加;如果为正,说明该区间曲线递增,则w向前取值即w数值减少。学习率:一般取值不宜太大,其控制MSE曲线上所取的w的跨越程度,学习率取值太大容易导致cost函数发散。)

2.4 梯度下降为贪心算法,由于非凸函数存在多个最优点(局部最优),所以梯度下降算法很难找到全局最优,容易陷入局部最优点,但是在深度神经网络中并没有太多的局部最优点,即很难陷入局部最优,所以梯度下降算法依然被大量使用。同时梯度下降算法存在鞍点问题(梯度为0)。

2.5 可以通过指数加权均值平滑cost函数,这样更容易观察曲线趋势。

3 随机梯度下降

3.1 cost在本文中指MSE(所有样本的平均损失),而loss是指单个样本的损失。利用单个样本的loss函数之后增加了随机噪声,可以很大程度上解决鞍点问题。

3.2 梯度下降算法每个点的损失计算是可以并行的,但是随机梯度下降算法w的更新依赖于上次w更新的结果。所以梯度下降算法效率更高,随机梯度算法性能更好但是时间复杂度太高。

3.3 因此折中引入batch(mini-batch)(批量随机梯度下降)。随机梯度下降法(stochasticgradientdescent,SGD)算法默认使用批量随机梯度下降方法。

相关推荐
We་ct2 分钟前
LeetCode 56. 合并区间:区间重叠问题的核心解法与代码解析
前端·算法·leetcode·typescript
Lionel6897 分钟前
分步实现 Flutter 鸿蒙轮播图核心功能(搜索框 + 指示灯)
算法·图搜索算法
聆风吟º7 分钟前
CANN hccl 深度解析:异构计算集群通信库的跨节点通信与资源管控实现逻辑
人工智能·wpf·transformer·cann
小妖66610 分钟前
js 实现快速排序算法
数据结构·算法·排序算法
xsyaaaan13 分钟前
代码随想录Day30动态规划:背包问题二维_背包问题一维_416分割等和子集
算法·动态规划
狸奴算君14 分钟前
告别机械回复:三步微调AI模型,打造会“读心”的智能客服
人工智能
七夜zippoe15 分钟前
脉向AI|当豆包手机遭遇“全网封杀“:GUI Agent是通向AGI的必经之路吗?
人工智能·ai·智能手机·agent·gui
木非哲17 分钟前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习
神的泪水20 分钟前
CANN 系列底层篇:基于 shmem 实现 NPU 设备内存的高效共享
人工智能
皮卡丘不断更22 分钟前
手搓本地 RAG:我用 Python 和 Spring Boot 给 AI 装上了“实时代码监控”
人工智能·spring boot·python·ai编程