深度学习之梯度下降算法

0.1 学习视频源于:b站:刘二大人《PyTorch深度学习实践》

0.2 本章内容为自主学习总结内容,若有错误欢迎指正!

1 线性模型

1.1 通过简单的线性模型来举例:

1.2 如图,简单的一个权重的线性模型,首先通过随机取w的值来找到与true line重合的w,其中通过MSE来判断w取值是否合理。(最简单的通过评价指标来判断模型的效果如何)

1.3 但是对于多个权重来说,搜索权重w的数量呈幂函数增长。此时可以想到分治方法,通过分治法减少首次搜索次数,找到MSE较小的点在进行一定区间范围内的权重w搜索。但是这种方法对于大部分的MSE曲线(不规则,非凸函数),会因为第一轮的分治取值不当导致错过最优点。

2 梯度下降

2.1 所以引入梯度下降算法寻找最小MSE值。

2.2 Q:什么是梯度?A:cost函数(本文为MSE)对权重求导。

2.3 梯度下降更新权重的方法:

(减去学习率×导数,是因为如果寻找的导数为负值,说明该区间曲线递减,则w向后取值即w数值增加;如果为正,说明该区间曲线递增,则w向前取值即w数值减少。学习率:一般取值不宜太大,其控制MSE曲线上所取的w的跨越程度,学习率取值太大容易导致cost函数发散。)

2.4 梯度下降为贪心算法,由于非凸函数存在多个最优点(局部最优),所以梯度下降算法很难找到全局最优,容易陷入局部最优点,但是在深度神经网络中并没有太多的局部最优点,即很难陷入局部最优,所以梯度下降算法依然被大量使用。同时梯度下降算法存在鞍点问题(梯度为0)。

2.5 可以通过指数加权均值平滑cost函数,这样更容易观察曲线趋势。

3 随机梯度下降

3.1 cost在本文中指MSE(所有样本的平均损失),而loss是指单个样本的损失。利用单个样本的loss函数之后增加了随机噪声,可以很大程度上解决鞍点问题。

3.2 梯度下降算法每个点的损失计算是可以并行的,但是随机梯度下降算法w的更新依赖于上次w更新的结果。所以梯度下降算法效率更高,随机梯度算法性能更好但是时间复杂度太高。

3.3 因此折中引入batch(mini-batch)(批量随机梯度下降)。随机梯度下降法(stochasticgradientdescent,SGD)算法默认使用批量随机梯度下降方法。

相关推荐
ayiya_Oese21 分钟前
[训练和优化] 3. 模型优化
人工智能·python·深度学习·神经网络·机器学习
小众AI23 分钟前
Suna: 开源多面手 AI 代理
人工智能·开源
就不爱吃大米饭26 分钟前
Chrome代理IP配置教程常见方式附问题解答
大数据·人工智能·搜索引擎
-一杯为品-31 分钟前
【深度学习】#11 优化算法
人工智能·深度学习·算法
兔兔爱学习兔兔爱学习42 分钟前
读论文alexnet:ImageNet Classification with Deep Convolutional Neural Networks
人工智能
-qOVOp-1 小时前
zst-2001 上午题-历年真题 计算机网络(16个内容)
网络·计算机网络·算法
Swift社区1 小时前
涂色不踩雷:如何优雅解决 LeetCode 栅栏涂色问题
算法·leetcode·职场和发展
冠位观测者1 小时前
【Leetcode 每日一题】2900. 最长相邻不相等子序列 I
数据结构·算法·leetcode
真的没有脑袋1 小时前
概率相关问题
算法·面试
Johny_Zhao1 小时前
VMware workstation 部署微软MDT系统
网络·人工智能·信息安全·微软·云计算·系统运维·mdt