区间预测 | MATLAB实现QRGRU门控循环单元分位数回归多输入单输出区间预测

区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测

目录

效果一览




基本介绍

MATLAB实现QRGRU门控循环单元分位数回归分位数回归多输入单输出区间预测。基于分位数回归的门控循环单元QRGRU的数据回归区间预测,多输入单输出模型 (Matlab完整程序和数据)

(主要应用于风速,负荷,功率)(Matlab完整程序和数据)

运行环境matlab2020及以上,输入多个特征,输出单个变量。

excel数据,方便学习和替换数据。

模型描述

分位数回归是简单的回归,就像普通的最小二乘法一样,但不是最小化平方误差的总和,而是最小化从所选分位数切点产生的绝对误差之和。如果 q=0.50(中位数),那么分位数回归会出现一个特殊情况 - 最小绝对误差(因为中位数是中心分位数)。我们可以通过调整超参数 q,选择一个适合平衡特定于需要解决问题的误报和漏报的阈值。GRU 有两个有两个门,即一个重置门(reset gate)和一个更新门(update gate)。从直观上来说,重置门决定了如何将新的输入信息与前面的记忆相结合,更新门定义了前面记忆保存到当前时间步的量。如果我们将重置门设置为 1,更新门设置为 0,那么我们将再次获得标准 RNN 模型。

程序设计

clike 复制代码
% gru
layers = [ ...
    sequenceInputLayer(inputSize,'name','input')   %输入层设置
    gruLayer(numhidden_units1,'Outputmode','sequence','name','hidden1') 
    dropoutLayer(0.3,'name','dropout_1')
    gruLayer(numhidden_units2,'Outputmode','last','name','hidden2') 
    dropoutLayer(0.3,'name','drdiopout_2')
    fullyConnectedLayer(outputSize,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    quanRegressionLayer('out',i)];
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% 参数设定
opts = trainingOptions('adam', ...
    'MaxEpochs',10, ...
    'GradientThreshold',1,...
    'ExecutionEnvironment','cpu',...
    'InitialLearnRate',0.001, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',2, ...   %2个epoch后学习率更新
    'LearnRateDropFactor',0.5, ...
    'Shuffle','once',...  % 时间序列长度
    'SequenceLength',1,...
    'MiniBatchSize',24,...
    'Verbose',0);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%
% 网络训练
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
y = Test.demand;
x = Test{:,3:end};
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% 归一化
[xnorm,xopt] = mapminmax(x',0,1);
xnorm = mat2cell(xnorm,size(xnorm,1),ones(1,size(xnorm,2)));
[ynorm,yopt] = mapminmax(y',0,1);
ynorm = ynorm';
        % 平滑层
        flattenLayer('Name','flatten')
        % GRU特征学习
        gruLayer(50,'Name','gru1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        % GRU输出
        gruLayer(NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        dropoutLayer(0.25,'Name','drop3')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130447132

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217

[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

[3] https://blog.csdn.net/kjm13182345320/article/details/127380096

相关推荐
scdifsn1 个月前
动手学深度学习9.1. 门控循环单元(GRU)-笔记&练习(PyTorch)
笔记·深度学习·cnn·gru·门控循环单元
百里与司空2 个月前
STM32——看门狗通俗解析
stm32·单片机·嵌入式硬件·门控循环单元
Francek Chen2 个月前
【机器学习-神经网络】循环神经网络
人工智能·rnn·深度学习·神经网络·机器学习·门控循环单元
逐梦苍穹3 个月前
GRU门控循环单元【数学+图解】
人工智能·深度学习·gru·门控循环单元
机器学习之心3 个月前
区间预测 | 光伏出力的区间预测(Matlab)
区间预测·光伏出力
机器学习之心5 个月前
区间预测 | Matlab实现QRCNN-BiGRU-Attention分位数回归卷积双向门控循环单元注意力机制时序区间预测
attention·分位数回归·卷积双向门控循环单元·注意力机制时序区间预测·qrcnn-bigru
机器学习之心5 个月前
区间预测 | Matlab实现QRCNN-BiLSTM-Attention分位数回归卷积双向长短期记忆网络注意力机制时序区间预测
matlab·attention·分位数回归·卷积双向长短期记忆网络·qrcnn-bilstm·注意力机制时序区间预测
矩阵猫咪5 个月前
基于 RNNs 对 IMDB 电影评论进行情感分类
人工智能·rnn·深度学习·门控循环单元·长短时记忆网络
阿鹿学术7 个月前
区间概率预测python|QR-CNN-BiLSTM+KDE分位数-卷积-双向长短期记忆神经网络-时间序列区间概率预测+核密度估计
python·神经网络·cnn·区间预测·时间序列预测·回归算法·深度学习预测
机器学习之心7 个月前
时序预测 | Matlab实现BiTCN-GRU双向时间卷积神经网络结合门控循环单元时间序列预测
门控循环单元·时间序列预测·双向时间卷积神经网络·bitcn-gru