基于PSO粒子群优化的分位数回归QRBILSTM网络模型的多输入单输出预测算法matlab仿真

目录

1.前言

2.算法运行效果图预览

3.算法运行软件版本

4.部分核心程序

5.算法理论概述

6.参考文献

7.算法完整程序工程


本文提出一种基于PSO优化的QRBILSTM网络模型,用于多输入单输出预测任务。该方法通过PSO优化QRBILSTM的隐含层数和学习率,以模型训练误差作为适应度函数,经过遗传操作筛选最优超参数组合。算法在Matlab2024b环境下实现,包含完整的训练流程和预测功能,通过对比预测数据与真实数据的误差评估模型性能。

1.前言

算法通过PSO优化将QRBiLSTM的隐含层个数和学习率作为PSO的优化变量,以QRBiLSTM模型在训练集上的回归预测误差作为PSO的适应度函数,通过迭代筛选最优超参数组合,再将最优超参数代入QRBiLSTM模型完成最终的多输入单输出回归预测。

2.算法运行效果图预览

(完整程序运行后无水印)

3.算法运行软件版本

Matlab2024b(推荐)或者matlab2022b

4.部分核心程序

(完整版代码包含中文注释和操作步骤视频)

复制代码
...........................................................
%bilstm
idx    = 0;
for i = 0.05:0.1:0.95
    i   
    idx = idx+1;
    layers = [ ...
        sequenceInputLayer(Isize,'name','input')   %输入层设置
        bilstmLayer(Hnum1,'Outputmode','sequence','name','hidden1') 
        dropoutLayer(0.3,'name','dropout_1')
        bilstmLayer(Hnum2,'Outputmode','last','name','hidden2') 
        dropoutLayer(0.3,'name','drdiopout_2')
        fullyConnectedLayer(Osize,'name','fullconnect')   % 全连接层
        quanRegressionLayer('out',i)];
    %训练
    net2(idx) = trainNetwork(Xn1,Yn1,layers,opts);
end
%预测
for i = 1:length(Yn2)
    pred1    = net1.predict(Xn2(i));
    ypre1(i) = pred1;
end
 
% 区间预测
for i = 1:length(net2)
    pred2(i,:) = net2(i).predict(Xn2);
    ypre2(i,:) = pred2(i,:); 
end
 
x =[1:2000-LVL];
figure
fill([x,x(end:-1:1)],[smooth(ypre2(1,:),1)',smooth(ypre2(end,end:-1:1),1)'],'r','FaceColor',[0.7 0.9 0.7],'EdgeColor','none')
hold on 
plot(ypre1,'r-','LineWidth',2)
hold on 
plot(Yn2','b-','LineWidth',2)
legend('95%置信区间','预测值','实际值')
xlabel('Time')
ylabel('负荷(KW)')
title('预测周负荷概率分布')
save R2.mat 
243

5.算法理论概述

通过PSO搜索BILSTM的最优超参数组合Θ=[lr,Nh],lr学习率、Nh隐藏层神经元数。

QR-BiLSTM(分位数回归 - 双向长短时记忆网络),是将分位数回归(QR)与双向长短时记忆网络(BiLSTM)融合的时序预测模型,核心解决传统BiLSTM仅输出"点预测"(如均值)、无法捕捉预测值分布特征的问题。

其核心可拆为两层:

BiLSTM的时序特征挖掘:BiLSTM由正向LSTM和反向LSTM组成,能同时捕捉时序数据的前向依赖和后向依赖,相比单向LSTM更全面地挖掘多输入时序特征的内在关联,适配多输入单输出的时序预测场景。

分位数回归的分布预测:放弃传统的均方误差损失,改用分位数回归损失函数,让模型能输出不同分位数(如 0.1~0.9)下的预测值,而非单一均值。例如:0.5分位数对应中位数预测,0.1/0.9分位数对应预测值的下界/上界,可量化预测结果的不确定性,这是传统BiLSTM不具备的核心优势。

QR-BiLSTM既保留了BiLSTM处理长时序依赖的能力,又通过分位数回归实现了"区间预测",而非仅"点预测"。

6.参考文献

1\] Lu Y , Li P , Wang P ,et al.A method of rice yield prediction based on the QRBILSTM-MHSA network and hyperspectral image\[J\].Computers and electronics in agriculture, 2010, 239(PartA):25.DOI:10.1016/j.compag.2025.110884. ## 7.算法完整程序工程 **OOOOO** **OOO** **O** **关注GZH后输入自动回复码:0023** **或输入自动回复码:QRBiLSTM2**

相关推荐
yongui478345 小时前
混凝土二维随机骨料模型 MATLAB 实现
算法·matlab
我爱C编程5 小时前
5G下行信号的频谱结构及模糊函数特征matlab仿真与分析
5g·matlab·模糊函数·频谱结构
yong99907 小时前
基于势能原理的圆柱齿轮啮合刚度计算MATLAB程序实现
开发语言·matlab
矿矿不想吃饭10 小时前
MATLAB control system model
matlab
bubiyoushang88812 小时前
基于MATLAB的局部特征尺度分解(LCD)实现与优化
开发语言·matlab
一个没有本领的人1 天前
Matlab批量修改文件夹的名称
matlab
kaikaile19951 天前
结构风荷载理论与Matlab计算
开发语言·matlab
yugi9878381 天前
遗传算法优化的极限学习机模型(GA-ELM)Matlab实现
开发语言·matlab
ghie90901 天前
MATLAB中编写不平衡磁拉力方程
开发语言·matlab
机器学习之心1 天前
卷积神经网络(CNN) 与SE(Squeeze-and-Excitation)注意力机制锂电池剩余寿命预测,MATLAB代码
人工智能·matlab·cnn·锂电池剩余寿命预测