【Chat GPT】用 ChatGPT 运行 Python

前言

ChatGPT 是一个基于 GPT-2 模型的人工智能聊天机器人,它可以进行智能对话,同时还支持 Python 编程语言的运行,可以通过 API 接口进行调用。本文将介绍如何使用 ChatGPT 运行 Python 代码,并提供一个实际代码案例。

ChatGPT 简介

ChatGPT 是一个可以与人进行智能对话的人工智能聊天机器人,它基于 GPT-2 模型开发。GPT-2 是 OpenAI 公司开发的一种基于深度学习的自然语言处理模型,它能够生成高质量的文章、诗歌、故事等,同时还能够进行智能对话。ChatGPT 利用 GPT-2 模型进行自然语言理解和生成,可以与用户进行流畅的对话。

ChatGPT 接口

ChatGPT 提供了 API 接口,可以通过 HTTP 请求向 ChatGPT 发送消息并接收机器人的回复。发送的消息必须使用 JSON 格式,包含以下字段:

python 复制代码
{
    "message": "你好"
}

接收到的机器人的回复也是一个 JSON 字符串,包含以下字段:

python 复制代码
{
    "message": "你好呀!"
}

其中,message 字段表示回复的文本内容。

ChatGPT Python SDK

为了方便使用 ChatGPT,我们还提供了一个 Python SDK。可以通过 pip 安装:

python 复制代码
pip install chatgpt

安装完成后,可以通过以下代码进行测试:

python 复制代码
from chatgpt import ChatGPT

chatbot = ChatGPT()
response = chatbot.get_response("你好")
print(response)

这段代码会向 ChatGPT 发送一个消息:"你好",并输出机器人的回复。

ChatGPT Python 示例代码

下面我们来介绍一个实际的 ChatGPT Python 示例代码。这个代码会向 ChatGPT 发送用户输入的问题,然后调用一个外部的 API 获取答案,最后将答案发送给用户。

首先,我们需要导入必要的依赖:
python 复制代码
import json
import requests
from chatgpt import ChatGPT
然后,我们需要定义 ChatGPT 的 API 地址和 API Key:
python 复制代码
CHATGPT_API_URL = "http://api.chatgpt.com/message"
CHATGPT_API_KEY = "YOUR_API_KEY_HERE"
接着,我们需要定义一个函数,用来向外部的 API 发送问题并获取答案:
python 复制代码
def get_answer(question):
    API_URL = "https://api.openai.com/v1/engine/davinci-codex/search"
    API_KEY = "YOUR_API_KEY_HERE"
    prompt = f"What is the answer to the question: {question}?"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {API_KEY}",
    }
    data = {
        "model": "davinci-codex-2022-06-23",
        "prompt": prompt,
        "max_tokens": 30,
        "temperature": 0,
        "n": 1,
        "stop": [".", "?", "!"],
    }
    response = requests.post(API_URL, headers=headers, json=data).json()
    answer = response["data"][0]["answer"]["text"].strip()
    return answer

这个函数使用了 OpenAI 的 GPT-3 模型,接收一个问题作为输入,调用 API 获取答案,并返回答案。

最后,我们需要定义一个主函数,用来接收用户的输入,向 ChatGPT 发送问题,并获取答案:
python 复制代码
def main():
    chatbot = ChatGPT(api_url=CHATGPT_API_URL, api_key=CHATGPT_API_KEY)
    while True:
        question = input("> ")
        response = chatbot.get_response(question)
        answer = get_answer(response)
        print(answer)

这个主函数使用一个循环,等待用户输入问题。每次接收到问题后,它会向 ChatGPT 发送问题,并获取机器人的回复。然后,它会调用 get_answer() 函数获取答案,并将答案输出到控制台。

最后,我们需要在程序末尾调用主函数:
python 复制代码
if __name__ == "__main__":
    main()

这个程序的完整代码如下:

python 复制代码
import json
import requests
from chatgpt import ChatGPT

CHATGPT_API_URL = "http://api.chatgpt.com/message"
CHATGPT_API_KEY = "YOUR_API_KEY_HERE"

def get_answer(question):
    API_URL = "https://api.openai.com/v1/engine/davinci-codex/search"
    API_KEY = "YOUR_API_KEY_HERE"
    prompt = f"What is the answer to the question: {question}?"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {API_KEY}",
    }
    data = {
        "model": "davinci-codex-2022-06-23",
        "prompt": prompt,
        "max_tokens": 30,
        "temperature": 0,
        "n": 1,
        "stop": [".", "?", "!"],
    }
    response = requests.post(API_URL, headers=headers, json=data).json()
    answer = response["data"][0]["answer"]["text"].strip()
    return answer

def main():
    chatbot = ChatGPT(api_url=CHATGPT_API_URL, api_key=CHATGPT_API_KEY)
    while True:
        question = input("> ")
        response = chatbot.get_response(question)
        answer = get_answer(response)
        print(answer)

if __name__ == "__main__":
    main()

总结

这个程序使用 ChatGPT 进行智能对话,并使用 OpenAI 的 GPT-3 模型获取答案。你可以将 YOUR_API_KEY_HERE 替换成你自己的 API Key,运行这个程序,进行测试。

相关推荐
一只敲代码的猪1 小时前
Llama 3 模型系列解析(一)
大数据·python·llama
Hello_WOAIAI1 小时前
批量将 Word 文件转换为 HTML:Python 实现指南
python·html·word
智慧化智能化数字化方案1 小时前
120页PPT讲解ChatGPT如何与财务数字化转型的业财融合
人工智能·chatgpt
winfredzhang1 小时前
使用Python开发PPT图片提取与九宫格合并工具
python·powerpoint·提取·九宫格·照片
矩阵推荐官hy147622 小时前
短视频矩阵系统种类繁多,应该如何对比选择?
人工智能·python·矩阵·流量运营
测试19982 小时前
外包干了2年,技术退步明显....
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展
码银2 小时前
【python】银行客户流失预测预处理部分,独热编码·标签编码·数据离散化处理·数据筛选·数据分割
开发语言·python
小木_.2 小时前
【python 逆向分析某有道翻译】分析有道翻译公开的密文内容,webpack类型,全程扣代码,最后实现接口调用翻译,仅供学习参考
javascript·python·学习·webpack·分享·逆向分析
R-sz2 小时前
14: curl#6 - “Could not resolve host: mirrorlist.centos.org; 未知的错误“
linux·python·centos
CITY_OF_MO_GY2 小时前
Pytorch常用内置优化器合集
人工智能·pytorch·python