hive 全量表、增量表、快照表、切片表和拉链表

全量表 :记录每天的所有的最新状态的数据,
增量表 :记录每天的新增数据,增量数据是上次导出之后的新数据。
快照表 :按日分区,记录截止数据日期的全量数据
切片表 :切片表根据基础表,往往只反映某一个维度的相应数据。其表结构与基础表结构相同,但数据往往只有某一维度,或者某一个事实条件的数据 拉链表 :记录每条信息的生命周期,当一条记录的生命周期结束,就会重新开始一条新的记录,并把当前日期放入生效开始日期。如果当前信息至今有效,则在生效结束日期中填入一个极大值(如9999-99-99) ,一般在数仓中通过增加start_date,end_date两列来表示。

拉链表适合于数据会发生变化,但是大部分是不变的。

使用拉链表的方式:通过生效开始日期<= 某个日期 生效结束日期>=某个日期,能够得到某个时间点的数据全量切片。

拉链表的形成过程,比如下图

如何制作拉链表?

1)新建和初始化拉链表dwd_order_info_his(首次独立执行)

sql 复制代码
drop table if exists dwd_order_info_his;
create external table dwd_order_info_his(
    `id` string COMMENT '订单编号',
    `total_amount` decimal(10,2) COMMENT '订单金额',
    `order_status` string COMMENT '订单状态',
    `user_id` string COMMENT '用户id' ,
    `payment_way` string COMMENT '支付方式',
    `out_trade_no` string COMMENT '支付流水号',
    `create_time` string COMMENT '创建时间',
    `operate_time` string COMMENT '操作时间',
    `start_date`  string COMMENT '有效开始日期',
    `end_date`  string COMMENT '有效结束日期'
) COMMENT '订单拉链表'
stored as parquet
location '/warehouse/gmall/dwd/dwd_order_info_his/'
tblproperties ("parquet.compression"="snappy");
 
insert overwrite table dwd_order_info_his
select
    id,
    total_amount,
    order_status,
    user_id,
    payment_way,
    out_trade_no,
    create_time,
    operate_time,
    '2019-01-01',
    '9999-99-99'
from ods_order_info oi
where oi.dt='2019-01-01';

2)获取当日变动数据:包括新增和修改(每日执行)

//当天的订单变化表dwd_order_info数据获取:

sql 复制代码
INSERT overwrite TABLE dwd_order_info PARTITION (day = '2019-01-02')
SELECT orderid,status
FROM orders
WHERE (createtime = '2019-01-02'  and modifiedtime = '2019-01-02') OR modifiedtime = '2019-01-02';

3)合并变动数据和旧拉链表数据(有更新的信息需要修改生效结束日期,无更新的信息生效结束日期不变)之后插入到临时表中

比如下图:

4)用临时表覆盖旧拉链表

sql 复制代码
insert overwrite table dwd_order_info_his 
select * from dwd_order_info_his_tmp;
相关推荐
鹿衔`1 天前
Hadoop HDFS 核心机制与设计理念浅析文档
大数据·hadoop·hdfs
`林中水滴`1 天前
数仓系列:一文读懂仓湖一体架构
数据仓库
Justice Young1 天前
Sqoop复习笔记
hadoop·笔记·sqoop
大厂技术总监下海1 天前
从Hadoop MapReduce到Apache Spark:一场由“磁盘”到“内存”的速度与范式革命
大数据·hadoop·spark·开源
zgl_200537791 天前
ZGLanguage 解析SQL数据血缘 之 Python提取SQL表级血缘树信息
大数据·数据库·数据仓库·hive·hadoop·python·sql
Justice Young2 天前
Hive第四章:HIVE Operators and Functions
大数据·数据仓库·hive·hadoop
LF3_2 天前
hive,Relative path in absolute URI: ${system:user.name%7D 解决
数据仓库·hive·hadoop
德彪稳坐倒骑驴2 天前
Hive SQL常遗忘的命令
hive·hadoop·sql
Justice Young2 天前
Hive第六章:Hive Optimization and Miscellaneous
数据仓库·hive·hadoop
Justice Young2 天前
Hive第五章:Integeration with HBase
大数据·数据仓库·hive·hbase