PyTorch中级教程:深入理解自动求导和优化

在你已经掌握了如何使用PyTorch构建神经网络的基础上,接下来我们将深入探讨PyTorch的两个核心特性:自动求导(Autograd)和优化(Optimization)。这两个特性在深度学习模型的训练过程中起着至关重要的作用。

一、自动求导

在PyTorch中,所有神经网络的核心是autograd包。先简单理解这个包,然后我们会去训练我们的第一个神经网络。

autograd包提供了所有张量上的自动求导操作。它是一个在运行时定义的框架,这意味着你的反向传播是由你的代码运行方式决定的,因此每次迭代可以不同。

让我们通过一些简单的例子来更好地理解这个概念:

python 复制代码
import torch

# 创建一个张量并设置requires_grad=True来追踪与它相关的计算
x = torch.ones(2, 2, requires_grad=True)
print(x)

# 对张量进行操作
y = x + 2
print(y)

# 因为y是操作的结果,所以它有grad_fn属性
print(y.grad_fn)

# 对y进行更多操作
z = y * y * 3
out = z.mean()

print(z, out)

二、梯度

我们可以通过调用.backward()来进行反向传播,计算梯度:

python 复制代码
out.backward()

# 输出梯度 d(out)/dx
print(x.grad)

三、训练模型

在定义神经网络后,我们可以将数据输入到网络中,并使用反向传播计算梯度。然后使用优化器更新网络的权重:

python 复制代码
import torch.optim as optim

# 创建优化器(随机梯度下降)
optimizer = optim.SGD(net.parameters(), lr=0.01)

# 在训练循环中:
optimizer.zero_grad()   # 清零梯度缓存
output = net(input)     # 输入数据并得到输出
loss = criterion(output, target)   # 计算损失函数
loss.backward()     # 反向传播
optimizer.step()    # 更新权重

到此,你已经了解了如何在PyTorch中使用自动求导和优化器进行模型训练。在实际使用中,你会发现这两个特性极大地简化了训练过程,使得PyTorch在深度学习框架中备受青睐。

相关推荐
流浪猪头拯救地球10 分钟前
利用 Python 解密 / 加密 PDF 文件
python·pdf·php
阿十六15 分钟前
OUC AI Lab 第七章:ViT & Swin Transformer
人工智能·深度学习·transformer
Mintopia20 分钟前
🌳 Claude `code/worktree` 命令最佳实践指南
人工智能·claude·trae
阿里云大数据AI技术23 分钟前
阿里云 Elasticsearch 的 AI 革新:高性能、低成本、智能化的搜索新纪元
人工智能·elasticsearch·阿里云
paperxie_xiexuo25 分钟前
如何用自然语言生成科研图表?深度体验PaperXie AI科研绘图模块在流程图、机制图与结构图场景下的实际应用效果
大数据·人工智能·流程图·大学生
Mintopia30 分钟前
🌌 AIGC模型的冷启动问题:Web应用的初期技术支撑策略
人工智能·trae
花开花富贵33 分钟前
多语言的爱意告白
python
二川bro43 分钟前
基于PyTorch的视觉检测2025:YOLO实战与优化
pytorch·yolo·视觉检测
2501_941805311 小时前
边缘计算:引领智能化未来的新技术
人工智能
没有钱的钱仔1 小时前
深度学习概念
人工智能·深度学习