PyTorch中级教程:深入理解自动求导和优化

在你已经掌握了如何使用PyTorch构建神经网络的基础上,接下来我们将深入探讨PyTorch的两个核心特性:自动求导(Autograd)和优化(Optimization)。这两个特性在深度学习模型的训练过程中起着至关重要的作用。

一、自动求导

在PyTorch中,所有神经网络的核心是autograd包。先简单理解这个包,然后我们会去训练我们的第一个神经网络。

autograd包提供了所有张量上的自动求导操作。它是一个在运行时定义的框架,这意味着你的反向传播是由你的代码运行方式决定的,因此每次迭代可以不同。

让我们通过一些简单的例子来更好地理解这个概念:

python 复制代码
import torch

# 创建一个张量并设置requires_grad=True来追踪与它相关的计算
x = torch.ones(2, 2, requires_grad=True)
print(x)

# 对张量进行操作
y = x + 2
print(y)

# 因为y是操作的结果,所以它有grad_fn属性
print(y.grad_fn)

# 对y进行更多操作
z = y * y * 3
out = z.mean()

print(z, out)

二、梯度

我们可以通过调用.backward()来进行反向传播,计算梯度:

python 复制代码
out.backward()

# 输出梯度 d(out)/dx
print(x.grad)

三、训练模型

在定义神经网络后,我们可以将数据输入到网络中,并使用反向传播计算梯度。然后使用优化器更新网络的权重:

python 复制代码
import torch.optim as optim

# 创建优化器(随机梯度下降)
optimizer = optim.SGD(net.parameters(), lr=0.01)

# 在训练循环中:
optimizer.zero_grad()   # 清零梯度缓存
output = net(input)     # 输入数据并得到输出
loss = criterion(output, target)   # 计算损失函数
loss.backward()     # 反向传播
optimizer.step()    # 更新权重

到此,你已经了解了如何在PyTorch中使用自动求导和优化器进行模型训练。在实际使用中,你会发现这两个特性极大地简化了训练过程,使得PyTorch在深度学习框架中备受青睐。

相关推荐
星期天要睡觉2 小时前
自然语言处理(NLP)——自然语言处理原理、发展历程、核心技术
人工智能·自然语言处理
低音钢琴2 小时前
【人工智能系列:机器学习学习和进阶01】机器学习初学者指南:理解核心算法与应用
人工智能·算法·机器学习
飞翔的佩奇3 小时前
【完整源码+数据集+部署教程】【天线&水】舰船战舰检测与分类图像分割系统源码&数据集全套:改进yolo11-repvit
前端·python·yolo·计算机视觉·数据集·yolo11·舰船战舰检测与分类图像分割系统
大千AI助手3 小时前
Hoeffding树:数据流挖掘中的高效分类算法详解
人工智能·机器学习·分类·数据挖掘·流数据··hoeffding树
新知图书3 小时前
大模型微调定义与分类
人工智能·大模型应用开发·大模型应用
山烛3 小时前
一文读懂YOLOv4:目标检测领域的技术融合与性能突破
人工智能·yolo·目标检测·计算机视觉·yolov4
大千AI助手3 小时前
独热编码:分类数据处理的基石技术
人工智能·机器学习·分类·数据挖掘·特征工程·one-hot·独热编码
钱彬 (Qian Bin)4 小时前
项目实践4—全球证件智能识别系统(Qt客户端开发+FastAPI后端人工智能服务开发)
人工智能·qt·fastapi
钱彬 (Qian Bin)4 小时前
项目实践3—全球证件智能识别系统(Qt客户端开发+FastAPI后端人工智能服务开发)
人工智能·qt·fastapi
Microsoft Word4 小时前
向量数据库与RAG
数据库·人工智能·向量数据库·rag