基于LoRA进行Stable Diffusion的微调

文章目录

基于LoRA进行Stable Diffusion的微调

数据集

本次微调使用的数据集为: LambdaLabs的Pokemon数据集

使用git clone命令下载数据集

bash 复制代码
git clone https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions

数据集一共883条样本,包含两个部分:image(图)和 text(文),如下图所示。

模型下载

bash 复制代码
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5

环境配置

bash 复制代码
# 创建一个新的conda环境
conda create -n diffusers python==3.10
# 激活conda环境
conda activate diffusers
# 下载模型仓库
git clone https://github.com/huggingface/diffusers
# 进入diffusers目录
cd diffusers
# 进行安装
pip install .
cd examples/text_to_image
# 安装环境所需的包
pip install -r requirements.txt

微调过程

微调时只需要使用以下命令运行 train_text_to_image_lora.py 文件即可。需要根据下载的路径文件地址对相应的参数进行修改,如 MODEL_NAME、DATASET_NAME 等;也可以根据GPU资源调整相应的参数,如 train_batch_size、gradient_accumulation_steps 等。

bash 复制代码
export MODEL_NAME="/data/sim_chatgpt/stable-diffusion-v1-5"
export OUTPUT_DIR="./finetune/lora/pokemon"
export DATASET_NAME="./pokemon-blip-captions"

nohup accelerate launch --mixed_precision="fp16"  train_text_to_image_lora.py \
  --pretrained_model_name_or_path=$MODEL_NAME \
  --dataset_name=$DATASET_NAME \
  --dataloader_num_workers=8 \
  --resolution=512 --center_crop --random_flip \
  --train_batch_size=2 \
  --gradient_accumulation_steps=4 \
  --max_train_steps=7500 \
  --learning_rate=1e-04 \
  --max_grad_norm=1 \
  --lr_scheduler="cosine" --lr_warmup_steps=0 \
  --output_dir=${OUTPUT_DIR} \
  --checkpointing_steps=500 \
  --validation_prompt="Totoro" \
  --seed=1337 \
  >> finetune_log0725.out 2>&1 &

备注 :参数设置参考这里,去掉了

export HUB_MODEL_ID="pokemon-lora"

--push_to_hub

--hub_model_id=${HUB_MODEL_ID}

--report_to=wandb

样本数据量为883,这里设置了train_batch_size为2,max_train_steps为7500,

显存占用约11个G,训练时长约8个小时左右。

显存占用情况如下:

推理

微调完成后,可以使用下面代码进行推理。

python 复制代码
from diffusers import StableDiffusionPipeline
import torch
model_path = "./finetune/lora/pokemon"
pipe = StableDiffusionPipeline.from_pretrained("/data/sim_chatgpt/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe.unet.load_attn_procs(model_path)
pipe.to("cuda")

prompt = "A pokemon with green eyes and red legs."
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0]
image.save("pokemon.png")      

代码运行后,会生成一个 pokemon.png 的图片,如下图所示。

WebUI部署

bash 复制代码
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui

需要将原模型文件以及微调后的lora模型文件放到 ~/stable-diffusion-webui//models/Stable-diffusion 下

bash 复制代码
cp -r /data/sim_chatgpt/stable-diffusion-v1-5/* ~/stable-diffusion-webui//models/Stable-diffusion/
mkdir ~/stable-diffusion-webui//models/Lora
cp -r ~/diffusers/examples/text_to_image/finetune/lora/pokemon/* ~/stable-diffusion-webui//models/Lora/

./webui.sh --no-download-sd-model --xformers --no-gradio-queue

报错:

RuntimeError: Couldn't install gfpgan.

解决办法:

安装
https://github.com/TencentARC/GFPGAN

bash 复制代码
git clone https://github.com/TencentARC/GFPGAN
pip install basicsr -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com

# Install facexlib - https://github.com/xinntao/facexlib
# We use face detection and face restoration helper in the facexlib package
pip install facexlib 

pip install -r requirements.txt
# 报错,无法安装(待解决)
python setup.py develop

# If you want to enhance the background (non-face) regions with Real-ESRGAN,
# you also need to install the realesrgan package
pip install realesrgan

参考:
https://huggingface.co/blog/lora
https://huggingface.co/blog/zh/lora
https://github.com/AUTOMATIC1111/stable-diffusion-webui

相关推荐
_妲己20 小时前
stable diffusion的MLSD直线(AI室内设计)
人工智能·stable diffusion
斯文by累1 天前
Stable Diffusion 3.5 FP8:高效文生图技术革命
人工智能·stable diffusion
csdn_aspnet1 天前
Stable Diffusion 3.5 FP8 的应用场景探索
人工智能·stable diffusion·fp8·sd3.5
多仔ヾ2 天前
Stable Diffusion AIGC 视觉设计实战教程之 06-提示词应用技巧
stable diffusion·aigc
_妲己5 天前
SD的细分功能包括重绘,图像处理、放大等扩散模型应用
人工智能·python·深度学习·机器学习·stable diffusion·comfyui·ai工作流
二院大蛙7 天前
Stable Diffusion 3.5 FP8在农业无人机航拍模拟图中的地形还原精度
stable diffusion· fp8· 农业无人机
或困7 天前
Stable Diffusion 3.5 FP8镜像支持灰度检测与异常报警
stable diffusion·灰度发布·fp8量化
沉默的大羚羊7 天前
Stable Diffusion 3.5 FP8模型可用于旅游宣传海报制作
stable diffusion·文生图·fp8
BOBO爱吃菠萝7 天前
Stable Diffusion 3.5 FP8镜像自动化部署脚本发布
stable diffusion·量化·fp8
九章云极AladdinEdu7 天前
项目分享|SD-Trainer:Stable Diffusion 训练集成工具
stable diffusion·端到端学习·高斯泼溅·3d场景分割·物体级代码本·2d到3d提升