opencv-28 自适应阈值处理-cv2.adaptiveThreshold()

什么是自适应阈值处理?

对于色彩均衡的图像,直接使用一个阈值就能完成对图像的阈值化处理。但是,有时图像的色彩是不均衡的,此时如果只使用一个阈值,就无法得到清晰有效的阈值分割结果图像。
有一种改进的阈值处理技术,其使用变化的阈值完成对图像的阈值处理,这种技术被称为自适应阈值处理 。在进行阈值处理时,自适应阈值处理的方式通过计算每个像素点周围临近区

域的加权平均值获得阈值,并使用该阈值对当前像素点进行处理。与普通的阈值处理方法相比**,自适应阈值处理能够更好地处理明暗差异较大的图像。**

OpenCV 提供了函数

cv2.adaptiveThreshold()

来实现自适应阈值处理,该函数的语法格式为:

复制代码
dst = cv.adaptiveThreshold( src, maxValue, adaptiveMethod, thresholdType,blockSize, C )

式中:

  • dst 代表自适应阈值处理结果。

  • src 代表要进行处理的原始图像。需要注意的是,该图像必须是 8 位单通道的图像。

  • maxValue 代表最大值。

  • adaptiveMethod 代表自适应方法。

  • thresholdType 代表阈值处理方式,该值必须是cv2.THRESH_BINARY 或 者 cv2.THRESH_BINARY_INV 中的一个。

  • blockSize 代表块大小。表示一个像素在计算其阈值时所使用的邻域尺寸,通常为 3、5、7 等。

  • C 是常量。

函数 cv2.adaptiveThreshold()根据参数 adaptiveMethod 来确定自适应阈值的计算方法,函数包含

cv2.ADAPTIVE_THRESH_MEAN_C 和 cv2.ADAPTIVE_THRESH_GAUSSIAN_C

两种不同的方法。这两种方法都是逐个像素地计算自适应阈值,自适应阈值等于每个像素由参数 blockSize 所指定邻域的加权平均值减去常量 C。两种不同的方法在计算邻域的加权平均值时所

采用的方式不同:

  • cv2.ADAPTIVE_THRESH_MEAN_C:邻域所有像素点的权重值是一致的。
  • cv2.ADAPTIVE_THRESH_GAUSSIAN_C:与邻域各个像素点到中心点的距离有关,通过高斯方程得到各个点的权重值。

实验:对一幅图像分别使用二值化阈值函数 cv2.threshold()和自适应阈值函cv2.adaptiveThreshold()进行处理,观察处理结果的差异

实验原图:

代码如下:

复制代码
import cv2
#读取图片
img=cv2.imread("computer.jpg",0)
#二值化处理,阈值为127,最大值为255,采用阈值处理方法THRESH_BINARY
t1,thd=cv2.threshold(img,127,255,cv2.THRESH_BINARY)
#自适应阈值处理,最大值为255,采用阈值处理方法ADAPTIVE_THRESH_MEAN_C,阈值类型为THRESH_BINARY,邻域大小为5,阈值为3
athdMEAN=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,5,3)
#自适应阈值处理,最大值为255,采用阈值处理方法ADAPTIVE_THRESH_GAUSSIAN_C,阈值类型为THRESH_BINARY,邻域大小为5,阈值为3
athdGAUS=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,5,3)

cv2.imshow("img",img)
cv2.imshow("thd",thd)
cv2.imshow("athdMEAN",athdMEAN)
cv2.imshow("athdGAUS",athdGAUS)
cv2.waitKey()
cv2.destroyAllWindows()

图(a)是原始图像。

图(b)是二值化阈值处理结果。

图©是自适应阈值采用方法 cv2.ADAPTIVE_THRESH_MEAN_C 的处理结果。

图(d)是自适应阈值采用方法 cv2.ADAPTIVE_THRESH_GAUSSIAN_C 的处理结果。

通过对比普通的阈值处理与自适应阈值处理可以发现,自适应阈值处理保留了更多的细节信息。在一些极端情况下,普通的阈值处理会丢失大量的信息,而自适应阈值处理可以得到效果更好的二值图像。

相关推荐
老胡说科技2 小时前
美砺科技谢秀鹏:让“看见”走在“相信”之前,AI驱动下的数字化范式革命,从“技术长征”到“生态协同”
人工智能·科技
endcy20165 小时前
基于Spring AI的RAG和智能体应用实践
人工智能·ai·系统架构
Blossom.1185 小时前
移动端部署噩梦终结者:动态稀疏视觉Transformer的量化实战
java·人工智能·python·深度学习·算法·机器学习·transformer
FPGA小迷弟5 小时前
ChatGPT回答用AI怎么怎么赚钱
大数据·人工智能
轻微的风格艾丝凡5 小时前
卷积的直观理解
人工智能·深度学习·神经网络·算法·计算机视觉·matlab·cnn
月下倩影时6 小时前
视觉进阶篇——机器学习训练过程(手写数字识别,量大管饱需要耐心)
人工智能·学习·机器学习
PixelMind6 小时前
【超分辨率专题】HYPIR:扩散模型先验与 GAN 对抗训练相结合的新型图像复原框架
人工智能·生成对抗网络·扩散模型·图像复原
说私域6 小时前
从裂变能力竞争到技术水平竞争:开源AI智能名片链动2+1模式S2B2C商城小程序对微商企业竞争格局的重塑
人工智能·小程序·开源
xybDIY6 小时前
基于 Tuya.AI 开源的大模型构建智能聊天机器人
人工智能·机器人·开源
这张生成的图像能检测吗6 小时前
(论文速读)基于DCP-MobileViT网络的焊接缺陷识别
图像处理·深度学习·计算机视觉·可视化·缺陷识别·焊缝缺陷