Python - OpenCV实现摄像头人脸识别(亲测版)

要使用Python 3和OpenCV进行摄像头人脸识别,您可以按照以下步骤进行操作:

0.安装OpenCV软件

去官网直接下载安装即可,如果是C++使用OpenCV,需要使用编译源码并配置环境变量。

1.安装OpenCV库

在命令行中输入以下命令:

复制代码
pip install opencv-python

2.准备人脸检测器

使用OpenCV的人脸检测器可以检测出图像中的人脸。在Python中,您可以使用以下代码来加载人脸检测器:

复制代码
import cv2  
  
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

在这里,您需要提供XML文件的路径(方法在第四步),该文件包含用于检测人脸的特征。OpenCV提供了多个预训练的人脸检测器,您可以选择其中任何一个。

3.打开摄像头

使用OpenCV的VideoCapture类可以打开摄像头。以下是一个示例代码:

复制代码
import cv2  
  
cap = cv2.VideoCapture(0)

在这里,cap是一个VideoCapture对象,它表示打开的摄像头。0表示第一个摄像头。

4.循环读取帧并处理

使用OpenCV的read()方法从摄像头读取帧。以下是一个示例代码:

复制代码
import cv2  
  
cap = cv2.VideoCapture(0)  
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')  
  
while True:  
    ret, frame = cap.read()  
    if ret:  
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)  
        faces_rects = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)  
        for (x, y, w, h) in face_rects:  
            cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)  
        cv2.imshow('Face Detection', frame)  
        if cv2.waitKey(1) & 0xFF == ord('q'):  
            break  
    else:  
        break
# 使用release()方法释放摄像头,并使用destroyAllWindows()方法关闭所有窗口
cap.release()  
cv2.destroyAllWindows()

在这里,需要用到haarcascade_frontalface_default.xml文件,这个文件在安装好的opencv目录下找到。

我们使用detectMultiScale()方法检测每一帧中的所有人脸,并在每张脸上绘制一个矩形。我们还使用imshow()方法显示结果。waitKey()方法等待用户按下键盘上的任意键,然后我们使用break语句退出循环。

综上所述,以上是使用Python 3和OpenCV进行摄像头人脸识别的基本步骤。您可以根据自己的需求进行修改和扩展。

相关推荐
这里有鱼汤1 小时前
小白必看:QMT里的miniQMT入门教程
后端·python
TF男孩11 小时前
ARQ:一款低成本的消息队列,实现每秒万级吞吐
后端·python·消息队列
该用户已不存在16 小时前
Mojo vs Python vs Rust: 2025年搞AI,该学哪个?
后端·python·rust
站大爷IP18 小时前
Java调用Python的5种实用方案:从简单到进阶的全场景解析
python
xiaohouzi1122331 天前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
用户8356290780511 天前
从手动编辑到代码生成:Python 助你高效创建 Word 文档
后端·python
侃侃_天下1 天前
最终的信号类
开发语言·c++·算法
小关会打代码1 天前
计算机视觉案例分享之答题卡识别
人工智能·计算机视觉
c8i1 天前
python中类的基本结构、特殊属性于MRO理解
python
天天进步20151 天前
用Python打造专业级老照片修复工具:让时光倒流的数字魔法
人工智能·计算机视觉