Matlab实现遗传算法仿真(附上40个仿真源码)

遗传算法(Genetic Algorithm,GA)是一种基于生物进化理论的优化算法,通过模拟自然界中的遗传过程,来寻找最优解。

在遗传算法中,每个解被称为个体,每个个体由一组基因表示,每个基因是解空间中的一个变量。算法通过不断地交叉、变异、选择等操作,来寻找最优解。

下面我们来介绍如何使用Matlab实现遗传算法。

文章目录

  • [1. 初始化种群](#1. 初始化种群)
  • [2. 计算适应度函数](#2. 计算适应度函数)
  • [3. 选择操作](#3. 选择操作)
  • [4. 交叉操作](#4. 交叉操作)
  • [5. 变异操作](#5. 变异操作)
  • [6. 迭代更新](#6. 迭代更新)
  • [7. 完整仿真源码下载](#7. 完整仿真源码下载)

1. 初始化种群

首先,我们需要定义种群的初始状态。在遗传算法中,每个个体的基因都是随机生成的,因此我们需要定义种群的数量、每个个体的基因长度、基因的取值范围等参数。

例如,我们设置种群数量为50,每个个体的基因长度为2,基因的取值范围为[-5,5],则可以使用如下代码进行初始化:

matlab 复制代码
n = 50; % 种群数量
d = 2; % 基因长度
lb = -5; % 基因取值下界
ub = 5; % 基因取值上界
pop = lb + (ub - lb) * rand(n,d); % 种群基因

2. 计算适应度函数

在遗传算法中,适应度函数是用来评估每个个体的解的好坏的。因此,我们需要定义适应度函数。

例如,我们定义适应度函数为f(x) = x1^2 + x2^2,则可以使用如下代码进行计算:

matlab 复制代码
f = sum(pop.^2,2);

3. 选择操作

选择操作是遗传算法中的一个重要步骤,它用来选择一部分优秀的个体,作为下一代个体的父代。在选择操作中,我们通常使用轮盘赌选择方法。

例如,我们定义选择概率为每个个体适应度函数值占总适应度函数值的比例,则可以使用如下代码进行选择操作:

matlab 复制代码
prob = f / sum(f); % 计算每个个体的选择概率
cum_prob = cumsum(prob); % 计算累计概率
new_pop = zeros(n,d); % 新种群基因
for i = 1:n
    r = rand; % 生成随机数
    idx = find(cum_prob >= r,1); % 选择个体
    new_pop(i,:) = pop(idx,:);
end
pop = new_pop; % 更新种群基因

4. 交叉操作

交叉操作是遗传算法中的另一个重要步骤,它用来产生下一代个体的子代。在交叉操作中,我们通常使用单点交叉方法。

例如,我们定义交叉概率为0.8,则可以使用如下代码进行交叉操作:

matlab 复制代码
cross_prob = 0.8; % 交叉概率
for i = 1:2:n
    if rand < cross_prob % 判断是否进行交叉
        k = randi(d-1); % 生成随机交叉点
        pop(i:i+1,k+1:d) = pop(i+1:-1:i,k+1:d); % 交叉操作
    end
end

5. 变异操作

变异操作是遗传算法中的最后一步,它用来产生下一代个体的变异体。在变异操作中,我们通常使用随机变异方法。

例如,我们定义变异概率为0.1,则可以使用如下代码进行变异操作:

matlab 复制代码
mut_prob = 0.1; % 变异概率
mut_range = ub - lb; % 变异范围
for i = 1:n
    if rand < mut_prob % 判断是否进行变异
        k = randi(d); % 生成随机变异位
        pop(i,k) = pop(i,k) + mut_range * (rand - 0.5); % 变异操作
    end
end

6. 迭代更新

最后,我们需要进行迭代更新,直到达到最大迭代次数或者满足停止条件为止。

例如,我们设置最大迭代次数为100,停止条件为适应度函数小于1e-6,则可以使用如下代码进行迭代更新:

matlab 复制代码
max_iter = 100; % 最大迭代次数
tol = 1e-6; % 停止条件
for i = 1:max_iter
    f = sum(pop.^2,2); % 计算适应度函数
    if min(f) < tol % 满足停止条件
        break;
    end
    prob = f / sum(f); % 计算每个个体的选择概率
    cum_prob = cumsum(prob); % 计算累计概率
    new_pop = zeros(n,d); % 新种群基因
    for j = 1:n
        r = rand; % 生成随机数
        idx = find(cum_prob >= r,1); % 选择个体
        new_pop(j,:) = pop(idx,:);
    end
    pop = new_pop; % 更新种群基因
    for j = 1:2:n
        if rand < cross_prob % 判断是否进行交叉
            k = randi(d-1); % 生成随机交叉点
            pop(j:j+1,k+1:d) = pop(j+1:-1:j,k+1:d); % 交叉操作
        end
    end
    for j = 1:n
        if rand < mut_prob % 判断是否进行变异
            k = randi(d); % 生成随机变异位
            pop(j,k) = pop(j,k) + mut_range * (rand - 0.5); % 变异操作
        end
    end
end

至此,我们已经完成了Matlab实现遗传算法的过程。可以通过改变参数,来求解不同的优化问题。

7. 完整仿真源码下载

基于Matlab实现最大类间方差阈值与遗传算法的道路分割(完整源码+图像+程序运行说明).rar :https://download.csdn.net/download/m0_62143653/88109945

基于Matlab遗传算法的协同优化算法求解函数问题(完整源码+思路+报告).rar:https://download.csdn.net/download/m0_62143653/88078569

基于Matlab遗传算法设计PID控制器(完整源码).rar:https://download.csdn.net/download/m0_62143653/87959484

基于Matlab遗传算法求解不等式(完整源码).rar:https://download.csdn.net/download/m0_62143653/87959482

基于Matlab遗传算法和KSW熵法实现灰度图像阈值分割(完整源码+图片).rar:https://download.csdn.net/download/m0_62143653/87959479

基于Matlab遗传算法的MP算法从图象中抽取一维数据(完整源码+图片).rar:https://download.csdn.net/download/m0_62143653/87959477

基于Matlab遗传算法道路图像阈值分割(完整源码+图片).rar:https://download.csdn.net/download/m0_62143653/87959475

基于Matlab遗传神经网络图像分割(完整源码+数据).rar:https://download.csdn.net/download/m0_62143653/87959473

基于Matlab实现遗传算法(完整源码+html).rar:https://download.csdn.net/download/m0_62143653/87959460

基于Matlab免疫遗传算法实现图像阈值分割(完整源码+图片).rar:https://download.csdn.net/download/m0_62143653/87953038

基于Matlab二进制编码遗传算法的PID整定(完整源码+说明文档).rar:https://download.csdn.net/download/m0_62143653/87953015

基于Matlab遗传算法求解TSP算法问题(完整源码+数据).rar:https://download.csdn.net/download/m0_62143653/87917126

基于Matlab遗传算法和非线性规划的函数寻优算法(完整源码+说明文档+数据).rar:https://download.csdn.net/download/m0_62143653/87917124

基于Matlab遗传算法工具箱详解及应用(完整源码).rar:https://download.csdn.net/download/m0_62143653/87917121

基于Matlab遗传算法的多目标优化算法(完整源码).rar:https://download.csdn.net/download/m0_62143653/87917119

基于Matlab遗传算法的LQR控制器优化设计(完整源码+数据).rar:https://download.csdn.net/download/m0_62143653/87917118

基于Matlab遗传算法的BP神经网络优化算法(完整源码).rar:https://download.csdn.net/download/m0_62143653/87917117

基于Matlab遗传模拟退火算法的聚类算法(完整源码+数据).rar:https://download.csdn.net/download/m0_62143653/87917112

基于Matlab量子遗传算法的函数寻优算法(完整源码).rar:https://download.csdn.net/download/m0_62143653/87917091

基于Matlab多种群遗传算法的函数优化算法(完整源码).rar:https://download.csdn.net/download/m0_62143653/87917064

基于Matlab多层编码遗传算法的车间调度算法(完整源码+数据).rar:https://download.csdn.net/download/m0_62143653/87917062

MATLAB遗传算法工具箱(完整源码).rar :https://download.csdn.net/download/m0_62143653/87917059

基于MATLAB实现多切线-遗传+粒子群+局部(完整源码).rar:https://download.csdn.net/download/m0_62143653/87864270

基于Matlab实现遗传算法(完整源码+数据).rar:https://download.csdn.net/download/m0_62143653/87803860

基于Matlab实现遗传算法(完整源码+工具包):https://download.csdn.net/download/m0_62143653/87875032

基于Matlab实现遗传算法(完整源码+数据):https://download.csdn.net/download/m0_62143653/87803860

基于遗传算法、粒子群算法、模拟退火、蚁群算法、免疫优化算法、鱼群算法,旅行商问题仿真(完整源码+说明文档+数据):https://download.csdn.net/download/m0_62143653/87785565

基于Matlab实现遗传算法神经网络的预测-染色体预测仿真(完整源码+数据).rar :https://download.csdn.net/download/m0_62143653/87782300

基于Matlab实现遗传算法优化计算-建模自变量降维仿真(完整源码+数据):https://download.csdn.net/download/m0_62143653/87781311

基于Matlab实现遗传算法优化BP神经网络-非线性函数拟合(完整源码+数据).rar :https://download.csdn.net/download/m0_62143653/87781309

基于Matlab实现神经网络遗传算法函数极值寻优-非线性函数极值寻优(完整源码+数据):https://download.csdn.net/download/m0_62143653/87781306

基于遗传算法的matlab实现(完整源码+数据):https://download.csdn.net/download/m0_62143653/87675984

基于遗传算法实现一维二进制编码的Matlab仿真(完整源码+说明文档+数据).rar :https://download.csdn.net/download/m0_62143653/87671599

基于遗传算法实现实数编码的Matlab仿真(完整源码+说明文档+数据):https://download.csdn.net/download/m0_62143653/87671596

基于遗传算法实现二维二进制编码的Matlab仿真(完整源码+说明文档+数据).rar :https://download.csdn.net/download/m0_62143653/87671592

基于遗传算法实现一维二进制编码,二维二进制编码和实数编码的Matlab仿真(完整源码+说明文档+数据):https://download.csdn.net/download/m0_62143653/87630982

基于遗传算法求解VRP问题matlab仿真(完整源码+数据):https://download.csdn.net/download/m0_62143653/87603690

基于遗传算法MATLAB仿真改进(完整源码+数据):https://download.csdn.net/download/m0_62143653/87603685

基于遗传算法解决旅行家问题的MATLAB与Python仿真(完整源码+数据):https://download.csdn.net/download/m0_62143653/87603683

相关推荐
Power202466627 分钟前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
YRr YRr1 小时前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_20241 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
红客5971 小时前
Transformer和BERT的区别
深度学习·bert·transformer
多吃轻食1 小时前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
charles_vaez2 小时前
开源模型应用落地-glm模型小试-glm-4-9b-chat-快速体验(一)
深度学习·语言模型·自然语言处理
YRr YRr2 小时前
深度学习:Transformer Decoder详解
人工智能·深度学习·transformer
Shy9604182 小时前
Bert完形填空
python·深度学习·bert
老艾的AI世界2 小时前
新一代AI换脸更自然,DeepLiveCam下载介绍(可直播)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai换脸·视频换脸·直播换脸·图片换脸
浊酒南街3 小时前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.9-4.10
人工智能·深度学习·神经网络·cnn