Pytorch(三)

一、经典网络架构图像分类模型

数据预处理部分:

  • 数据增强
  • 数据预处理
  • DataLoader模块直接读取batch数据

网络模块设置:

  • 加载预训练模型,torchvision中有很多经典网络架构,可以直接调用
  • 注意别人训练好的任务跟咱们的并不完全一样,需要把最后的head层改一改,一般也就是最后的全连接层,改成自己的任务
  • 续联时可以全部重头训练,也可以只训练最后咱们任务的层,因为前几层都是做特征提取的,本质任务目标是一致的

网络模型保存与测试:

  • 模型保存的时候可以带有选择性,例如在验证集中如果当前效果好则保存
  • 读取模型进行实际测试

二、迁移学习

利用别人训练好的模型来训练自己的模型

注:两种物体尽可能相似

迁移学习网站: Start Locally | PyTorch

三、花图像分类案例

未完结

python 复制代码
#数据读取与预处理操作
data_dir = './a/'
# 训练集
train_dir = data_dir + '/train'
#验证集
valid_ir = data_dir + '/valid'

#制作数据源
data_transfroms = {
    'train':transforms.Compose([transforms.RandomRotation(45), #随机旋转(-45~45)
    transforms.CenterCrop(224), #从中心开始裁剪
    transforms.RandomHorizontalFlip(p = 0.5), #随机水平翻转
    transforms.RandomVerticalFlip(p = 0.5), #随机垂直翻转
    transforms.ColorJitter(brightness=0.2,contrast=0.1,saturation=0.1,hue = 0.1),
    transforms.RandomGrayscale(p = 0.025), #概率转换成灰度率,3通道就是R=G=B
    transforms.ToTensor(),
    transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
    ]),
    'valid':transforms.Compose([transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])
    ]),
}

#batch数据制作
batch_size = 8
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir,x),data_transfroms[x]) for x in ['train','valid']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x],batch_size = batch_size,shuffle = True) for x in ['train','valid']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train','valid']}
class_names = image_datasets['train'].classes


#读取标签对应的实际名字
with open('cat_to_name.json','r') as f:
    cat_to_name = json.load(f)

#加载model中提供的模型,并且直接用训练好的权重当做初始化参数
model_name = 'resnet'
#是否用人家训练好的特征来做
feature_extract = True

#是否用GPU来训练
train_on_gpu = torch.cuda.is_available()

if not train_on_gpu:
    print('cuda is not available. Training on CPU')
else:
    print('cuda is available. Training on GPU')

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def set_parameter_requires_grad(model,feature_extracting):
    if feature_extracting:
        for param in model.parameter():
            param.requires_grad = False

model_ft = models.resnet152()
相关推荐
hnult2 分钟前
全功能学练考证在线考试平台,赋能技能认证
大数据·人工智能·笔记·课程设计
gang_unerry2 分钟前
量子退火与机器学习(4): 大模型 1-bit 量子化中的 QEP 与 QQA 准量子退火技术
人工智能·python·机器学习·量子计算
青瓷程序设计13 分钟前
【交通标志识别系统】python+深度学习+算法模型+Resnet算法+人工智能+2026计算机毕设项目
人工智能·python·深度学习
Mr.huang15 分钟前
RNN系列模型演进及其解决的问题
人工智能·rnn·lstm
智驱力人工智能19 分钟前
货车走快车道检测 高速公路安全治理的工程实践与价值闭环 高速公路货车占用小客车道抓拍系统 城市快速路货车违规占道AI识别
人工智能·opencv·算法·安全·yolo·目标检测·边缘计算
老百姓懂点AI23 分钟前
[RAG架构] 拒绝向量检索幻觉:智能体来了(西南总部)AI agent指挥官的GraphRAG实战与AI调度官的混合索引策略
人工智能·架构
ws20190724 分钟前
技术迭代与湾区赋能:AUTO TECH China 2026广州汽车零部件展的四大核心价值
人工智能·科技·汽车
啥都想学点28 分钟前
关于制作技术视频讲解的问卷调查
python
喵手28 分钟前
Python爬虫实战:博物馆官网的“展览预告/正在热展”栏目,抓取展览名称、精确展期、具体展厅位置以及票务/预约规则(附CSV导出)!
爬虫·python·爬虫实战·零基础python爬虫教学·博物馆信息采集·采集展览预告/正在热展等·采集数据csv导出
喵手29 分钟前
Python爬虫实战:电商实体消歧完整实战 - 从混乱店铺名到标准化知识库的工程化实现,一文带你搞定!
爬虫·python·算法·爬虫实战·零基础python爬虫教学·同名实体消除·从混乱店铺名到标准化知识库