大模型中的注意力机制——MHA、GQA、MQA

注意力机制是Transformer模型的核心组件。考虑到注意力机制的计算效率问题,研究人员也进行了许多研究。代表的就是以下三种模式:

MHA(Multi-head Attention)是标准的多头注意力机制,包含h个Query、Key 和 Value 矩阵。所有注意力头的 Key 和 Value 矩阵权重不共享

MQA(Multi-Query Attention,Fast Transformer Decoding: One Write-Head is All You Need)是多查询注意力的一种变体,也是用于自回归解码的一种注意力机制。与MHA不同的,MQA 让所有的头之间共享同一份 Key 和 Value 矩阵,每个头只单独保留了一份 Query 参数,从而大大减少 Key 和 Value 矩阵的参数量。

GQA(Grouped-Query Attention,GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints)是分组查询注意力,GQA将查询头分成G组,每个组共享一个Key 和 Value 矩阵。GQA-G是指具有G组的grouped-query attention。GQA-1具有单个组,因此具有单个Key 和 Value,等效于MQA。若GQA-H具有与头数相等的组,则其等效于MHA。

显然,GQA介于MHA和MQA之间。下图展示了他们的具体结构:

相关推荐
mingo_敏19 分钟前
深度学习中的并行策略概述:2 Data Parallelism
人工智能·深度学习
Jack_pirate3 小时前
深度学习中的特征到底是什么?
人工智能·深度学习
微凉的衣柜3 小时前
微软在AI时代的战略布局和挑战
人工智能·深度学习·microsoft
哦哦~9214 小时前
深度学习驱动的油气开发技术与应用
大数据·人工智能·深度学习·学习
程序员一诺8 小时前
【深度学习】嘿马深度学习笔记第10篇:卷积神经网络,学习目标【附代码文档】
人工智能·python·深度学习·算法
MUTA️8 小时前
RT-DETR学习笔记(2)
人工智能·笔记·深度学习·学习·机器学习·计算机视觉
学术头条11 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客11 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
Ven%12 小时前
如何在防火墙上指定ip访问服务器上任何端口呢
linux·服务器·网络·深度学习·tcp/ip
IT猿手12 小时前
最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解TP1-TP10及工程应用---盘式制动器设计,提供完整MATLAB代码
开发语言·深度学习·算法·机器学习·matlab·多目标算法