大模型中的注意力机制——MHA、GQA、MQA

注意力机制是Transformer模型的核心组件。考虑到注意力机制的计算效率问题,研究人员也进行了许多研究。代表的就是以下三种模式:

MHA(Multi-head Attention)是标准的多头注意力机制,包含h个Query、Key 和 Value 矩阵。所有注意力头的 Key 和 Value 矩阵权重不共享

MQA(Multi-Query Attention,Fast Transformer Decoding: One Write-Head is All You Need)是多查询注意力的一种变体,也是用于自回归解码的一种注意力机制。与MHA不同的,MQA 让所有的头之间共享同一份 Key 和 Value 矩阵,每个头只单独保留了一份 Query 参数,从而大大减少 Key 和 Value 矩阵的参数量。

GQA(Grouped-Query Attention,GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints)是分组查询注意力,GQA将查询头分成G组,每个组共享一个Key 和 Value 矩阵。GQA-G是指具有G组的grouped-query attention。GQA-1具有单个组,因此具有单个Key 和 Value,等效于MQA。若GQA-H具有与头数相等的组,则其等效于MHA。

显然,GQA介于MHA和MQA之间。下图展示了他们的具体结构:

相关推荐
陈文锦丫1 小时前
MixFormer: A Mixed CNN–Transformer Backbone
人工智能·cnn·transformer
Coding茶水间3 小时前
基于深度学习的安全帽检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
AI-智能4 小时前
别啃文档了!3 分钟带小白跑完 Dify 全链路:从 0 到第一个 AI 工作流
人工智能·python·自然语言处理·llm·embedding·agent·rag
大模型教程6 小时前
AI基础入门(应用开发篇)——LangChain:核心抽象
langchain·llm·agent
大模型教程6 小时前
LangChain 入门①:什么是 LangChain?LLM 应用开发的 “好帮手”
langchain·llm·agent
AI大模型6 小时前
当大模型遇上垂直领域:微调如何让 AI 从 “什么都会” 到 “样样精通”?
程序员·llm·agent
AI大模型6 小时前
被 LangChain 全家桶搞晕了?LangGraph、LangSmith、LangFlow 一文读懂
langchain·llm·agent
烟袅7 小时前
5 分钟把 Coze 智能体嵌入网页:原生 JS + Vite 极简方案
前端·javascript·llm
adjusttraining8 小时前
毁掉孩子视力不是电视和手机,两个隐藏很深因素,很多家长并不知
深度学习·其他
智泊AI10 小时前
API是什么?为什么需要API?如何调用API(Python示例)
llm