AnimateDiff论文解读-基于Stable Diffusion文生图模型生成动画

文章目录

  • [1. 摘要](#1. 摘要)
  • [2. 引言](#2. 引言)
  • [3. 算法](#3. 算法)
    • [3.1 Preliminaries](#3.1 Preliminaries)
    • [3.2. Personalized Animation](#3.2. Personalized Animation)
    • [3.3 Motion Modeling Module](#3.3 Motion Modeling Module)
  • [4. 实验](#4. 实验)
  • 5.限制
  • [6. 结论](#6. 结论)

论文: 《AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning》
github: https://github.com/guoyww/animatediff/

1. 摘要

随着文生图模型Stable Diffusion及个性化finetune方法:DreamBooth、LoRA发展,人们可以用较低成本生成自己所需的高质量图像,这导致对于图像动画的需求越来越多。本文作者提出一种框架,可将现有个性化文生图模型所生成图片运动起来。该方法内核为在模型中插入一个运动建模模块,训练后用于蒸馏合理的运动先验。一旦训练完成,所有基于同一个文生图模型的个性化版本都可变为文本驱动模型。作者在动画、真实图上验证,AnimateDiff生成视频比较平滑,同时保留域特性及输出多样性。

2. 引言

作者提出的AnimateDiff,可对于任意个性化文生图模型生成动图,收集每个个性化域对应视频进行finetune是不方便的,因此作者设计运动建模模块,在大规模视频上进行finetune,学习到运动先验。

3. 算法

AnimateDiff结构如图2所示,

3.1 Preliminaries

作者使用通用文生图模型SD,对于个性化图像生成领域,如果采集目标域数据进行finetune模型,成本大,DreamBooth通过设置稀有字符串作为目标域标志 ,同时增加原始模型生成图像进行训练,减少信息丢失;LoRA训练模型参数差值∆W,为降低计算量,作者将∆W解耦为两个低秩矩阵,只有transformer block中映射矩阵参与finetune

3.2. Personalized Animation

Personalized Animation定义为:给出个性化文生图模型,比如DreamBooth或LoRA,通过少量训练成本或不训练即可驱动生成器,保留原始域信息及质量。

为达到上述目的,常规方案是扩展模型增加关注时间的结构,通过大量视频数据学习合理运动先验,但是个性化视频收集成本大,有限视频将导致源域信息丢失。

对此,作者选择训练泛化性运动建模模块,推理时将其插入文生图模型,作者实验验证发现,该模块可用于任何基于同一基础模型的文生图模型,因为几乎未改变基础模型特征空间,ControlNet也曾证明过。

3.3 Motion Modeling Module

网络扩展:

原始SD仅能用于处理图像数据,若要处理5D视频张量(batch × \times ×channels × \times ×frames × \times ×height × \times ×width),则需要扩展网络,作者将原模型中每个2D卷积及attention层转换到仅关注空间的伪3D层,将frame维度合并到batch维度 。新引入的运动模块可在每个batch中跨帧执行,使得生成视频跨帧平滑,内容一致,细节如图3所示。

运动建模模块设计:

该模块主要用于高效交换跨帧信息,作者发现普通的时空transformer足够建模运动先验。其由几个self-attention在时空维执行,特行图z的空间维度height、width reshape到batch维度 ,得到长度frames的 b a t c h ∗ h e i g h t ∗ w i d t h batch*height*width batch∗height∗width的序列,该映射特征经过几个self-attention block,如式4,

使得该模块可以捕获帧序列同一位置之间时空依赖性;为扩大感受野,作者在U型扩散网路每个分辨率层级引入该模块;此外,self-attention中增加正弦位置编码,使得网络关注当前帧时空位置

训练目标函数:

训练过程:采样视频数据,通过预训练编码器,编码到隐空间,经过运动模块扩展的扩散网络,将噪声隐向量及对应文本prompt作为输入,预测增加到隐向量上的噪声,如式5,

4. 实验

如图4,作者展示不同模型效果;

图5,作者比较AnimateDiff与Text2Video-Zero,帧与帧之间内容一致性,Text2Video-Zero内容缺少细粒度一致性。

消融实验:

表2作者比较3种不同扩散机制,可视化结果如图6,Schedule B达到两者均衡。

5.限制

作者发现个性化文生图模型数据域为非逼真图片,更容易生成失败,如图7,有明显伪影,不能生成合理运动,归因于训练视频与个性化模型之间存在较大分布差异。可通过收集目标域视频finetune解决。

6. 结论

作者提出AnimateDiff,可将大多数个性化文生图模型进行视频生成,基于简单设计的运动建模模块,在大量视频数据学习运动先验,插入个性化文生图模型用于生成自然合理的目标域动图。

相关推荐
后端小肥肠1 小时前
Coze编程首测:我用大白话搭了个“AI漫剧流水线”,太离谱了!
人工智能·aigc·coze
GISer_Jing4 小时前
AI赋能前端:从核心概念到工程实践的全景学习指南
前端·javascript·aigc
AAA_bo14 小时前
liunx安装canda、python、nodejs、git,随后部署私有网页内容提取工具--JinaReader全攻略
linux·python·ubuntu·typescript·aigc·python3.11·jina
百锦再5 小时前
Python实现开源AI模型引入及测试全过程
人工智能·python·ai·开源·aigc·模型·自然语言
0x2115 小时前
[论文阅读]AttnTrace: Attention-based Context Traceback for Long-Context LLMs
论文阅读
李加号pluuuus5 小时前
【论文阅读】Ovi: Twin Backbone Cross-Modal Fusion for Audio-Video Generatio
论文阅读
文心智能体平台Agentbuilder6 小时前
行业智能体变现指南-信息技术专题
人工智能·aigc·智能体·行业智能体·自然语言开发·数字人智能体
蓝海星梦7 小时前
Chain‑of‑Thought 推理链评估全解析:从参考方法到无参考指标
论文阅读·人工智能·自然语言处理·cot
有Li7 小时前
D-EDL:用于鲁棒医学分布外检测的差异化证据深度学习|文献速递-医疗影像分割与目标检测最新技术
论文阅读·文献·医学生
墨风如雪15 小时前
OpenAI 甩出王炸:GPT-5.2-Codex 上线,这次它想做你的“赛博合伙人”
aigc