数据结构空间复杂度

数据结构空间复杂度

空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时额外占用存储空间大小的量度

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。

空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

实例1:

c 复制代码
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

故空间复杂度为O(1)

例2:

c 复制代码
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}

空间复杂度为O(N)

例3:

c 复制代码
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
}

空间复杂度O(N)

例4:

c 复制代码
//计算斐波那契递归Fib的空间复杂度
//long long Fib(size_t N)
//{
//	if (N < 3)
//		return 1;
//
//	return Fib(N - 1) + Fib(N - 2);
//}

所以空间复杂度为O(N)

常见的复杂度对比

5201314 O(1) 常数阶
3N+4 O(N) 线性阶
3N2+4N+5 O(N2) 平方阶
3log2N+4 O(logN) 对数阶
2N+3nlogN+14 O(NlogN ) NlogN
N3+2N2+4N+5 O(N3) 立方阶
2N O(2N) 指数阶
相关推荐
Python_Study20251 分钟前
制造业企业如何构建高效数据采集系统:从挑战到实践
大数据·网络·数据结构·人工智能·架构
忆锦紫2 分钟前
图像降噪算法:中值滤波算法及MATLAB实现
图像处理·算法·matlab
知乎的哥廷根数学学派4 分钟前
基于多分辨率注意力脉冲神经网络的机械振动信号故障诊断算法(西储大学轴承数据,Pytorch)
人工智能·pytorch·深度学习·神经网络·算法·机器学习
kebijuelun15 分钟前
Qwen 团队提出 ArenaRL:面向开放式 Agent RL 任务
人工智能·算法·语言模型·transformer
机器学习之心17 分钟前
PSO优化的K-means++聚类算法用于用户用电行为分析的实现方案
算法·kmeans·聚类
小黄鸭code21 分钟前
C++ 算法笔试题(常见算法版)
c++·算法·排序算法
lixinnnn.24 分钟前
优先级队列:最小函数值
数据结构·算法
Xの哲學26 分钟前
Linux Worklet 深入剖析: 轻量级延迟执行机制
linux·服务器·网络·数据结构·算法
666HZ66628 分钟前
数据结构2.1 线性表习题
c语言·数据结构·算法
lihao lihao34 分钟前
C++ set和map
开发语言·c++·算法