数据结构空间复杂度

数据结构空间复杂度

空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时额外占用存储空间大小的量度

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。

空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

实例1:

c 复制代码
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

故空间复杂度为O(1)

例2:

c 复制代码
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}

空间复杂度为O(N)

例3:

c 复制代码
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
}

空间复杂度O(N)

例4:

c 复制代码
//计算斐波那契递归Fib的空间复杂度
//long long Fib(size_t N)
//{
//	if (N < 3)
//		return 1;
//
//	return Fib(N - 1) + Fib(N - 2);
//}

所以空间复杂度为O(N)

常见的复杂度对比

5201314 O(1) 常数阶
3N+4 O(N) 线性阶
3N2+4N+5 O(N2) 平方阶
3log2N+4 O(logN) 对数阶
2N+3nlogN+14 O(NlogN ) NlogN
N3+2N2+4N+5 O(N3) 立方阶
2N O(2N) 指数阶
相关推荐
wearegogog1238 小时前
光谱分析波段选择的连续投影算法
算法
执笔论英雄8 小时前
【RL】DAPO 数据处理
算法
why1519 小时前
面经整理——算法
java·数据结构·算法
悦悦子a啊9 小时前
将学生管理系统改造为C/S模式 - 开发过程报告
java·开发语言·算法
痕忆丶10 小时前
双线性插值缩放算法详解
算法
_codemonster11 小时前
深度学习实战(基于pytroch)系列(四十八)AdaGrad优化算法
人工智能·深度学习·算法
鹿角片ljp11 小时前
力扣140.快慢指针法求解链表倒数第K个节点
算法·leetcode·链表
自由生长202411 小时前
位运算第1篇-异或运算-快速找出重复数字
算法
xxxxxmy12 小时前
同向双指针(滑动窗口)
python·算法·滑动窗口·同向双指针
释怀°Believe12 小时前
Daily算法刷题【面试经典150题-5️⃣图】
算法·面试·深度优先