数据结构空间复杂度

数据结构空间复杂度

空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时额外占用存储空间大小的量度

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。

空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

实例1:

c 复制代码
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

故空间复杂度为O(1)

例2:

c 复制代码
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}

空间复杂度为O(N)

例3:

c 复制代码
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
}

空间复杂度O(N)

例4:

c 复制代码
//计算斐波那契递归Fib的空间复杂度
//long long Fib(size_t N)
//{
//	if (N < 3)
//		return 1;
//
//	return Fib(N - 1) + Fib(N - 2);
//}

所以空间复杂度为O(N)

常见的复杂度对比

5201314 O(1) 常数阶
3N+4 O(N) 线性阶
3N2+4N+5 O(N2) 平方阶
3log2N+4 O(logN) 对数阶
2N+3nlogN+14 O(NlogN ) NlogN
N3+2N2+4N+5 O(N3) 立方阶
2N O(2N) 指数阶
相关推荐
syzyc8 分钟前
[ABC267F] Exactly K Steps
数据结构·动态规划·题解
向阳逐梦1 小时前
PID控制算法理论学习基础——单级PID控制
人工智能·算法
2zcode1 小时前
基于Matlab多特征融合的可视化指纹识别系统
人工智能·算法·matlab
Owen_Q1 小时前
Leetcode百题斩-二分搜索
算法·leetcode·职场和发展
矢志航天的阿洪1 小时前
蒙特卡洛树搜索方法实践
算法
草莓熊Lotso2 小时前
【数据结构初阶】--顺序表(二)
c语言·数据结构·经验分享·其他
汤姆爱耗儿药2 小时前
数据结构——散列表
数据结构·散列表
UnderTheTime2 小时前
2025 XYD Summer Camp 7.10 筛法
算法
zstar-_2 小时前
Claude code在Windows上的配置流程
笔记·算法·leetcode
圆头猫爹2 小时前
第34次CCF-CSP认证第4题,货物调度
c++·算法·动态规划