数据结构空间复杂度

数据结构空间复杂度

空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时额外占用存储空间大小的量度

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。

空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

实例1:

c 复制代码
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

故空间复杂度为O(1)

例2:

c 复制代码
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}

空间复杂度为O(N)

例3:

c 复制代码
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
}

空间复杂度O(N)

例4:

c 复制代码
//计算斐波那契递归Fib的空间复杂度
//long long Fib(size_t N)
//{
//	if (N < 3)
//		return 1;
//
//	return Fib(N - 1) + Fib(N - 2);
//}

所以空间复杂度为O(N)

常见的复杂度对比

5201314 O(1) 常数阶
3N+4 O(N) 线性阶
3N2+4N+5 O(N2) 平方阶
3log2N+4 O(logN) 对数阶
2N+3nlogN+14 O(NlogN ) NlogN
N3+2N2+4N+5 O(N3) 立方阶
2N O(2N) 指数阶
相关推荐
爱coding的橙子10 分钟前
每日算法刷题Day78:10.23:leetcode 一般树7道题,用时1h30min
算法·leetcode·深度优先
Swift社区12 分钟前
LeetCode 403 - 青蛙过河
算法·leetcode·职场和发展
地平线开发者13 分钟前
三种 Badcase 精度验证方案详解与 hbm_infer 部署实录
算法·自动驾驶
papership24 分钟前
【入门级-算法-5、数值处理算法:高精度的减法】
算法·1024程序员节
lingran__28 分钟前
算法沉淀第十天(牛客2025秋季算法编程训练联赛2-基础组 和 奇怪的电梯)
c++·算法
DuHz39 分钟前
基于MIMO FMCW雷达的二维角度分析多径抑制技术——论文阅读
论文阅读·物联网·算法·信息与通信·毫米波雷达
一二学长1 小时前
快速排序(JAVA详细讲解快速排序的四种方式)
数据结构
Dragon_D.1 小时前
排序算法大全——插入排序
算法·排序算法·c·学习方法
大数据张老师2 小时前
数据结构——红黑树
数据结构·算法·红黑树
自在极意功。2 小时前
动态规划核心原理与高级实战:从入门到精通(Java全解)
java·算法·动态规划·最优子结构·重叠子问题