数据结构空间复杂度

数据结构空间复杂度

空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时额外占用存储空间大小的量度

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。

空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

实例1:

c 复制代码
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

故空间复杂度为O(1)

例2:

c 复制代码
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
 if(n==0)
 return NULL;
 
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}

空间复杂度为O(N)

例3:

c 复制代码
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
 if(N == 0)
 return 1;
 
 return Fac(N-1)*N;
}

空间复杂度O(N)

例4:

c 复制代码
//计算斐波那契递归Fib的空间复杂度
//long long Fib(size_t N)
//{
//	if (N < 3)
//		return 1;
//
//	return Fib(N - 1) + Fib(N - 2);
//}

所以空间复杂度为O(N)

常见的复杂度对比

5201314 O(1) 常数阶
3N+4 O(N) 线性阶
3N2+4N+5 O(N2) 平方阶
3log2N+4 O(logN) 对数阶
2N+3nlogN+14 O(NlogN ) NlogN
N3+2N2+4N+5 O(N3) 立方阶
2N O(2N) 指数阶
相关推荐
无限进步_17 小时前
【C语言&数据结构】对称二叉树:镜像世界的递归探索
c语言·开发语言·数据结构·c++·git·算法·visual studio
星辞树17 小时前
揭秘阿里 DIN:当深度学习遇上“千物千面”
算法
刘立军17 小时前
如何选择FAISS的索引类型
人工智能·算法·架构
小芒果_0117 小时前
整理归并排序
c++·算法·排序算法·信息学奥赛
牛三金17 小时前
匿踪查询沿革-Private Information Retrieval(PIR)
算法·安全
德育处主任17 小时前
『NAS』在群晖部署一个文件加密工具-hat.sh
前端·算法·docker
星辞树17 小时前
从 L1/L2 到 Dropout:深度解析正则化,为何推荐系统“只能练一次”?
算法
玖剹17 小时前
队列+宽搜(bfs)
数据结构·c++·算法·leetcode·宽度优先
mit6.82418 小时前
01bfs|前缀和的前缀和
算法
wen__xvn18 小时前
代码随想录算法训练营DAY11第五章 栈与队列part02
算法