PyTorch Lightning教程四:超参数的使用

如果需要和命令行接口进行交互,可以使用Python中的argparse包,快捷方便,对于Lightning而言,可以利用它,在命令行窗口中,直接配置超参数等操作,但也可以使用LightningCLI的方法,更加轻便简单。

ArgumentParser

ArgumentParser是Python的内置特性,进而构建CLI程序,我们可以使用它在命令行中设置超参数和其他训练设置。

python 复制代码
from argparse import ArgumentParser

parser = ArgumentParser()
# 训练方式(GPU or CPU or 其他)
parser.add_argument("--devices", type=int, default=2)
# 超参数
parser.add_argument("--layer_1_dim", type=int, default=128)
# 解析用户输入和默认值 (returns argparse.Namespace)
args = parser.parse_args()

# 在程序中使用解析后的参数
trainer = Trainer(devices=args.devices)
model = MyModel(layer_1_dim=args.layer_1_dim)

然后在命令行中如此调用

shell 复制代码
python trainer.py --layer_1_dim 64 --devices 1

Python的参数解析器在简单的用例中工作得很好,但在大型项目中维护它可能会变得很麻烦。例如,每次在模型中添加、更改或删除参数时,都必须添加、编辑或删除相应的add_argument。Lightning CLI提供了与Trainer和LightningModule的无缝集成,为您自动生成CLI参数。

LightningCLI

shell 复制代码
pip install "jsonargparse[signatures]"

执行起来很简单,例如

python 复制代码
# main.py
from lightning.pytorch.cli import LightningCLI
from lightning.pytorch.demos.boring_classes import DemoModel, BoringDataModule

def cli_main():
    # 只需要写这一行即可,两个参数,对应模型和数据
    cli = LightningCLI(DemoModel, BoringDataModule)	
    # 注意: 别写.fit

if __name__ == "__main__":
    cli_main()  # 在函数中实现CLI并在主if块中调用它是一种很好的做法

然后在命令行中执行help,进行文档查询

shell 复制代码
python main.py --help

执行结果

shell 复制代码
usage: main.py [-h] [-c CONFIG] [--print_config[=flags]]
               {fit,validate,test,predict,tune} ...

pytorch-lightning trainer command line tool

optional arguments:
  -h, --help            Show this help message and exit.
  -c CONFIG, --config CONFIG
                        Path to a configuration file in json or yaml format.
  --print_config[=flags]
                        Print the configuration after applying all other
                        arguments and exit. The optional flags customizes the
                        output and are one or more keywords separated by
                        comma. The supported flags are: comments,
                        skip_default, skip_null.

subcommands:
  For more details of each subcommand, add it as an argument followed by
  --help.

  {fit,validate,test,predict,tune}
    fit                 Runs the full optimization routine.
    validate            Perform one evaluation epoch over the validation set.
    test                Perform one evaluation epoch over the test set.
    predict             Run inference on your data.
    tune                Runs routines to tune hyperparameters before training.

因此可以使用如下方法:

shell 复制代码
$ python main.py fit		# 训练
$ python main.py validate	# 验证
$ python main.py test		# 测试
$ python main.py predict	# 预测

例如训练过程,可以通过以下方法具体调参数

shell 复制代码
# learning_rate
python main.py fit --model.learning_rate 0.1

# output dimensions
python main.py fit --model.out_dim 10 --model.learning_rate 0.1

# trainer 和 data arguments
python main.py fit --model.out_dim 2 --model.learning_rate 0.1 --data.data_dir '~/' --trainer.logger False
相关推荐
codelancera几秒前
机器学习每日一题001-矩阵转置
人工智能·机器学习·矩阵
幸福清风2 分钟前
【Word】用 Python 轻松实现 Word 文档对比并生成可视化 HTML 报告
python·html·word
Mar1f6 分钟前
阿里云百炼智能体连接云数据库实践(DMS MCP)
数据库·人工智能·mysql·阿里云·oracle
一点一木15 分钟前
🚀 2025 年 08 月 GitHub 十大热门项目排行榜 🔥
前端·人工智能·github
爱分享的飘哥26 分钟前
第一百零二章:AI的“未来电影制片厂CEO”:多模态系统落地项目实战(完整 AI 视频创作平台)
人工智能·微服务·系统架构·llm·tts·多模态ai·ai视频创作平台
IT_陈寒28 分钟前
React性能优化:5个90%开发者不知道的useEffect内存泄漏陷阱与实战解法
前端·人工智能·后端
小白学大数据35 分钟前
Scrapy 框架实战:构建高效的快看漫画分布式爬虫
开发语言·分布式·爬虫·python·scrapy
萧鼎7 小时前
深入理解 Python Scapy 库:网络安全与协议分析的瑞士军刀
开发语言·python·web安全
可乐+冰08 小时前
Android 编写高斯模糊功能
android·人工智能·opencv
嘀咕博客9 小时前
SynClub-百度在海外推出的AI社交产品
人工智能·百度·ai工具