PyTorch Lightning教程四:超参数的使用

如果需要和命令行接口进行交互,可以使用Python中的argparse包,快捷方便,对于Lightning而言,可以利用它,在命令行窗口中,直接配置超参数等操作,但也可以使用LightningCLI的方法,更加轻便简单。

ArgumentParser

ArgumentParser是Python的内置特性,进而构建CLI程序,我们可以使用它在命令行中设置超参数和其他训练设置。

python 复制代码
from argparse import ArgumentParser

parser = ArgumentParser()
# 训练方式(GPU or CPU or 其他)
parser.add_argument("--devices", type=int, default=2)
# 超参数
parser.add_argument("--layer_1_dim", type=int, default=128)
# 解析用户输入和默认值 (returns argparse.Namespace)
args = parser.parse_args()

# 在程序中使用解析后的参数
trainer = Trainer(devices=args.devices)
model = MyModel(layer_1_dim=args.layer_1_dim)

然后在命令行中如此调用

shell 复制代码
python trainer.py --layer_1_dim 64 --devices 1

Python的参数解析器在简单的用例中工作得很好,但在大型项目中维护它可能会变得很麻烦。例如,每次在模型中添加、更改或删除参数时,都必须添加、编辑或删除相应的add_argument。Lightning CLI提供了与Trainer和LightningModule的无缝集成,为您自动生成CLI参数。

LightningCLI

shell 复制代码
pip install "jsonargparse[signatures]"

执行起来很简单,例如

python 复制代码
# main.py
from lightning.pytorch.cli import LightningCLI
from lightning.pytorch.demos.boring_classes import DemoModel, BoringDataModule

def cli_main():
    # 只需要写这一行即可,两个参数,对应模型和数据
    cli = LightningCLI(DemoModel, BoringDataModule)	
    # 注意: 别写.fit

if __name__ == "__main__":
    cli_main()  # 在函数中实现CLI并在主if块中调用它是一种很好的做法

然后在命令行中执行help,进行文档查询

shell 复制代码
python main.py --help

执行结果

shell 复制代码
usage: main.py [-h] [-c CONFIG] [--print_config[=flags]]
               {fit,validate,test,predict,tune} ...

pytorch-lightning trainer command line tool

optional arguments:
  -h, --help            Show this help message and exit.
  -c CONFIG, --config CONFIG
                        Path to a configuration file in json or yaml format.
  --print_config[=flags]
                        Print the configuration after applying all other
                        arguments and exit. The optional flags customizes the
                        output and are one or more keywords separated by
                        comma. The supported flags are: comments,
                        skip_default, skip_null.

subcommands:
  For more details of each subcommand, add it as an argument followed by
  --help.

  {fit,validate,test,predict,tune}
    fit                 Runs the full optimization routine.
    validate            Perform one evaluation epoch over the validation set.
    test                Perform one evaluation epoch over the test set.
    predict             Run inference on your data.
    tune                Runs routines to tune hyperparameters before training.

因此可以使用如下方法:

shell 复制代码
$ python main.py fit		# 训练
$ python main.py validate	# 验证
$ python main.py test		# 测试
$ python main.py predict	# 预测

例如训练过程,可以通过以下方法具体调参数

shell 复制代码
# learning_rate
python main.py fit --model.learning_rate 0.1

# output dimensions
python main.py fit --model.out_dim 10 --model.learning_rate 0.1

# trainer 和 data arguments
python main.py fit --model.out_dim 2 --model.learning_rate 0.1 --data.data_dir '~/' --trainer.logger False
相关推荐
weixin_4577600015 小时前
Python 数据结构
数据结构·windows·python
0***K89215 小时前
前端机器学习
人工智能·机器学习
陈天伟教授15 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
m0_6501082415 小时前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动
zandy101115 小时前
2025年11月AI IDE权深度测榜:深度分析不同场景的落地选型攻略
ide·人工智能·ai编程·ai代码·腾讯云ai代码助手
欢喜躲在眉梢里15 小时前
CANN 异构计算架构实操指南:从环境部署到 AI 任务加速全流程
运维·服务器·人工智能·ai·架构·计算
小女孩真可爱15 小时前
大模型学习记录(五)-------调用大模型API接口
pytorch·深度学习·学习
0***R51515 小时前
人工智能在金融风控中的应用
人工智能
2501_9414037615 小时前
人工智能赋能智慧金融互联网应用:智能风控、个性化理财与金融服务优化实践探索》
人工智能
合作小小程序员小小店16 小时前
web网页,在线%抖音,舆情,线性回归%分析系统demo,基于python+web+echart+nlp+线性回归,训练,数据库mysql
python·自然语言处理·回归·nlp·线性回归