Linked List

文章目录

链表

补充知识

typedef

给类型换名字,比如

cpp 复制代码
typedef struct Student
{
	int sid;
	char name[100];
	char sex;
}ST;//ST就代表了struct Student
//即这上方一大坨都可以用ST表示
//原先结构体定义对象是通过下面这种方式实现的
struct Student st;
//现在使用typedef后,即可用下方方式定义
ST st;

或者来一个结构体指针定义。

cpp 复制代码
typedef struct Student
{
	int sid;
	char name[100];
	char sex;
}*PST;
//这样PST等价于struct Student *
//这样初始化后就可以直接初始化一个结构体指针
PST ps = &st;
//之后ps进行指针的调用就行,例如下所示
ps->sid = 99;

离散存储

离散的含义,任何一个点到其他点之间是有间距的。

定义

n个节点离散分配,彼此通过指针相连接,每个节点只有一个前驱节点,每个节点只有一个后继节点,首节点没有前驱节点,尾节点没有后继节点。

专业术语

  • 首节点:第一个有效的节点。
  • 尾节点:最后一个有效节点。
  • 头结点:在首节点的前面加上这个结点,即第一个有效节点前的节点叫做头结点。头结点里面没有存放有效数据,也没有存放链表有效节点的个数,其真正含义是可以方便我们对链表进行操作(增删改查)。
  • 头指针:指向头结点的指针变量(存放了头结点的地址)。
  • 尾指针:指向尾节点的指针变量。

确定一个链表需要几个参数?

首节点可以通过头结点推出来,所以不是必须的,尾指针是0,因为没有后继节点,所以尾指针也不是必须的。尾节点也不是必须的,找到最后空的就知道尾节点,所以也不是必须的。头指针包含了指向头结点的地址,所以头结点也不是必须的,记下头指针就行。首节点可以由头结点推出来,所以首节点也不是必须的。所以综上,只要知道头结点的地址,就可以把整个链表的所有信息都找到。所以说确定一个链表只需要一个参数,即为头指针。
头结点的数据类型和首节点的数据类型是一样的。

代码

通过代码来模拟链表。

每一个节点的数据类型都是一模一样的,一个节点可以分成两部分,一部分是存放有效的数据,另有一部分是存放指针,指向后面的一个节点。这样就造成了每一个节点的数据类型是一样的。这里面的指针指向的是第二个节点的整体。

所以现在是包含了一个数据域一个指针域,

cpp 复制代码
typedef struct Node{
	int data;//数据域
	struct Node *pNext;//指针域 
	//这里的指针域指向的是与其数据类型一致,但是另外一个节点。(下一节点的地址)(本节点的指针指向了下一节点)
}NODE, *PNODE;
//NODE是struct Node类型,*PNODE是struct Node *类型,记住struct Node是包含了整个整体的,要带上花括号{},即struct Node{}

链表分类

  • 单向链表
  • 双向链表:这下相比单链表,每个节点分成了三个部分,分别有指向自己的前驱和后继的指针,以及存放有效值。
  • 循环链表:能通过任何一个节点找到其他所有的节点,就是首尾节点连接了。
  • 非循环链表

常见算法

  1. 遍历
  2. 查找
  3. 清空
  4. 销毁
  5. 求长度
  6. 排序
  7. 删除节点
  8. 插入节点

狭义的算法是与数据的存储方式密切相关的,广义的算法是与数据的存储方式无关。泛型是利用某种技术达到的效果就是,不同的存存储方式,执行的操作时是一样的。(泛型是一种假象)

插入节点伪代码:

cpp 复制代码
r = p->next;
p->next = q;
q->next = r;
//
q->next = p->next;
p->next = q;
//以上两种方法都能实现q节点插入到p和p.next中间

删除节点的伪代码:

cpp 复制代码
r = p->next;
p->next = p-next->next;
free(r);
//C当中不会自动释放内存,所以得手动释放内存,free
//C++当中是delete

链表创建和常用算法

cpp 复制代码
#include <iostream>
#include <cmalloc>

using namespace std;

typedef struct Node{
	int data;//数据域
	struct Node *pNext;//指针域
}Node, *PNODE;
//现在就是定义了这么一个数据类型,叫做struct Node。

//函数声明
PNODE create_list(void);
void traverse_list(PNODE pHead);//遍历
bool is_empty(PNODE pHead);//判断是否为空,就看pHead->pNext == nullptr的结果
int length_list(PNODE);//链表长度
bool insert_list(PNODE, int, int);
bool delete_list(PNODE, int, int*);
//可以把删除的结点放到第三个参数当中去,也就是delete删除的元素可以暂存到第三个参数当中去。delete_list(pHead, 3, &val);
void sort_list(PNODE);//排序

int main(void){
	PNODE pHead = nullptr;
	//等价于struct Node *pHead = nullptr;
	pHead = create_list();
	//create_list()函数的功能就是创建一个非循环单向链表,然后把单向链表的首地址赋给pHead。
	//创建一个非循环单向链表,并将该链表的头结点地址,赋给pHead。
	sort_list(pHead);
	traverse_list(pHead);
	//insert_list(pHead, 4, 33);
	int len = length_list(pHead);
	cout << "链表长度是: " << endl;
	//这是代表遍历的意思,之前也说了,推出链表的所有参数只需要一个头结点指针(头指针)就行。
	if (is_empty(pHead))
		cout << "链表为空" << "\n" << endl;
	else
		cout << "链表非空" << "\n" << endl;
	return 0;
}
//因为动态内存管理,在一个函数当中申请的内存可以在另外一个函数当中调用。

//创建函数
PNODE create_list(void)//最后只要分配好的内存地址就行
{
	int len;//存放有效节点的个数
	int val;//临时存放用户输入的结点的值
	//分配了一个不存放数据的头结点
	PNODE pHead = (PNODE)malloc(sizeof(NODE));
	if (pHead == nullptr)
	{
		cout << "分配失败,程序终止" << endl;
		return -1;
	}
	PNODE pTail = pHead;
	pTail->pNext = nullptr;//这样永远指向尾节点
	
	cout << "请输入您需要生产的链表节点的个数:len = " << endl;
	cin >> len;
	for(int i = 0; i < len; ++i)
	{
		cout << "请输入第 " << i+1 << " 个节点的值: " << endl;//i+1是因为链表从1开始的,这里的i是从0开始的
		cin >> val;
		//每循环一次,就用pNew造出一个新的节点
		PNODE pNew = (PNODE)malloc(sizeof(NODE));//临时节点
		if (pNew == nullptr)
		{
			cout << "分配失败,程序终止" << endl;
			return -1;
		}
		//总而言之就是利用pHead生成一个临时节点,然后把数值放到临时节点的数据域当中去,再把临时节点挂到之前一个节点的后面,最后再把临时节点清空。但是这样有问题,每次新生成的结点都会挂到之前一个节点的后面,造成"一对多"的现象,所以解决方法就是,每次新生成的结点都要挂到整个链表的尾节点的后面。所以定义一个pTail永远指向尾节点。
		pNew->data = val;
		pTail->pNext = pNew;
		pNew->pNext = nullptr;
		pTail = pNew;
	}
	return pHead;//返回头结点地址
}

//遍历函数
//主要思路,先定义一个指针p,指向第一个有效的结点,如果此时指向的结点不为空,就把数据域给输出就行,再往后移一个。
void travese_list(PNODE pHead)
{
	PNONDE p = pHead->pNext;
	while(p != nullptr)
	{
		cout << p_data << endl;
		p = p->pNext;//一定要往后移,往后移才能指向下一个
	}
	cout << "\n" << "输出完毕" << endl;
	return;
}

//判断是否为空的函数
bool is_empty(PNODE pHead)
{
	if(pHead->pNext == nullptr)
		return true;
	else
		return false;
}

//长度函数
int length_list(PNODE pHead)
{
	PNODE p = pHead->pNext;
	int cnt = 0;
	while(p->pNext != nullptr)
	{
		++cnt;
		p = p->pNext;
	}
	return cnt;
}

//排序函数
//依次把数每次和后面的数进行比较,这下就是升序排序的
void sort_list(PNODE pHead)
{
	int i, j, t;
	int len = length_list(pHead);
	PNODE p, q;
	for (i = 0 ,p = pHead->pNext; i<len-1; ++i, p = p->pNext)
	{
		for (j = j+1, q = p->pNext; j<len; ++j, q = q->pNext)
		{
		if (p->data > q->data) //类似于数组中的a[i]>a[j]
		{
			t = p->data;//t = a[i];
			p->data = q->data;//a[i] = a[j];
			q->data = t;//a[j] = t;
		  }
	  }
  }
	return;
}
//听完郝老师讲的这里,我才真正知道在C++当中函数重载的具体意思,operator之类的醍醐灌顶。

//插入函数
//在pHead所指向的链表的第pos个节点的前面插入一个新的节点,该节点的值是val,并且pos的值是从1开始。记住pos不包含头结点,而是从首节点(有效节点)开始。
bool insert_list(PNODE pHead, int pos, int val)
{
	int i = 0;
	PNODE p = pHead;
	while(p != nullptr && i < pos-1)
	//这里的p是代表不是最后一个,i<pos-1表示找到插入位置之前的结点。
	//while函数的作用是将p移动到pos-1的位置,画图就好理解。
	{
		p = p->pNext;
		++i;
	}
	if (i > pos-1 || p == nullptr)
	//这里的if是判断要插入的位置是否超出了链表多一个位置
	//i>pos-1是判断pos是否为小于1的数,若是则直接false
	//p = nullptr是为了处理插入的位置,例如有5个节点,现在在第7个节点位置插入。因为这是接着while循环的,所以多一层if判断经过while循环后的p的变化,同时还能判断是否为空链表的存在。
		return false;
	PNODE pNew = (PNODE)malloc(sizeof(NODE));
	if (pNew == nullptr)
	{
		cout << "动态内存分配失败" << "\n" << endl;
		return -1;
	}
	//以上pos等于1的时候,不执行前面两个表达式,即while和if,直接执行后面的,此时将新元素插入到头结点和第一个有效节点之间。
	pNew->data = val;
	PNODE q = p->pNext;
	p->pNext = pNew;
	pNew->pNext = q;
	return true;
}

//删除函数
bool delete_list(PNODE p, int pos, int*pVal)
{
	int i = 0;
	PNODE p = pHead;
	while(p->pNext != nullptr && i < pos-1)
	{
		p = p->pNext;
		++i;
	}
	if (i > pos-1 || p->pNext == nullptr)
		return false;
	PNODE q = p->pNext;
	*pVal = q->data;
	
	//删除p节点后面的结点
	p->pNext = p->pNext->pNext;
	free(q);
	q = nullptr;
	return true;
}

链表总结

狭义的讲:数据结构是专门研究数据存储的问题,数据的存储包含两方面,个体的存储,以及个体关系的存储。算法是对存储数据的操作。

广义的讲:数据结构既包含数据的存储也包含数据的操作,对存储数据的操作就是算法。

算法:

狭义的讲:算法是和数据的存储方式密切相关。

广义的讲:算法和数据的存储方式无关。

这就是泛型的思想。

数据的存储结构有几种:

线性:连续存储【数组】,离散存储【链表】,线性结构的应用---栈,队列。

链表的优缺点:

  1. 插入和删除快
  2. 存取元素速度慢
  3. 存储容量无限

数组的优缺点:

  1. 存取速度很快
  2. 但事先必须知道数组的长度
  3. 插入删除元素很慢
  4. 空间通常是有限制的
  5. 需要大块连续的内存块
相关推荐
渝妳学C3 分钟前
【C++】类和对象(下)
c++
数据小小爬虫4 分钟前
Python爬虫获取AliExpress商品详情
开发语言·爬虫·python
小爬虫程序猿5 分钟前
利用Python爬虫速卖通按关键字搜索AliExpress商品
开发语言·爬虫·python
一朵好运莲12 分钟前
React引入Echart水球图
开发语言·javascript·ecmascript
最后一个bug16 分钟前
rt-linux中使用mlockall与free的差异
linux·c语言·arm开发·单片机·嵌入式硬件·算法
EleganceJiaBao18 分钟前
【C语言】结构体模块化编程
c语言·c++·模块化·static·结构体·struct·耦合
Eiceblue24 分钟前
使用Python获取PDF文本和图片的精确位置
开发语言·python·pdf
xianwu54332 分钟前
反向代理模块。开发
linux·开发语言·网络·c++·git
xiaocaibao77738 分钟前
Java语言的网络编程
开发语言·后端·golang
brhhh_sehe1 小时前
重生之我在异世界学编程之C语言:深入文件操作篇(下)
android·c语言·网络