【Deepsort】C++版本Deepsort编译(依赖opencv,eigen3)

目录

下载源码

bash 复制代码
https://github.com/shaoshengsong/DeepSORT

安装onnxruntime

安装方法参考博客

安装Eigen3

当谈及线性代数计算库时,Eigen3是一个强大而受欢迎的选择。Eigen3是一个C++模板库,提供了许多用于线性代数运算的功能,如向量、矩阵、矩阵运算、线性方程组求解等。以下是Eigen3的一些主要特点和功能:

高性能:Eigen3使用了优化的算法和技术,具有出色的运行速度和高效的内存使用。它通过使用表达式模板技术来在编译时生成高效的计算代码,避免了一些运行时的开销。

简洁易用:Eigen3提供了直观且易于使用的API,使得进行线性代数计算变得简单和直观。它的API设计简洁明了,提供了丰富的运算符重载和友好的语法,使得代码编写更加简单和可读。

广泛的功能:Eigen3支持多种线性代数运算,包括向量和矩阵的基本运算、线性方程组的求解、特征值和特征向量的计算、矩阵分解(如LU分解、QR分解等)、广义特征值问题的求解等。它还提供了一些高级功能,如支持稀疏矩阵和动态大小矩阵等。

跨平台支持:Eigen3是一个跨平台的库,可以在各种操作系统和编译器上使用。它使用标准的C++语法和特性,并且不依赖于任何特定的硬件或操作系统。

开源免费:Eigen3是一个开源库,遵循MPL2.0协议,可以免费使用和修改。它的源代码可在GitHub上获得,方便用户进行定制和扩展。

Eigen3已被广泛应用于科学计算、机器学习、计算机图形学等领域。无论是在学术研究还是实际应用中,Eigen3都是一个强大而可靠的线性代数库。

bash 复制代码
sudo apt-get install libeigen3-dev

编译opencv

编译命令:下载opencv4的源码包后解压,并下载contrib扩展包,开启dnn

读取视频需要安装ffmpeg:

bash 复制代码
sudo apt-get install build-essential
sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

对于libjasper-dev安装失败:

bash 复制代码
apt-get install software-properties-common
add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"
apt update
apt-get install libjasper-dev
bash 复制代码
sudo apt-get install ffmpeg

获取ffmpeg的相关安装目录:

bash 复制代码
pkg-config --cflags libavformat

编译:

bash 复制代码
cmake    -DCMAKE_BUILD_TYPE=Release -DOPENCV_EXTRA_MODULES_PATH=/home/opencv_contrib-4.7.0/opencv_contrib-4.7.0/modules -DWITH_OPENCL=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_WITH_DEBUG_INFO=OFF -DBUILD_TESTS=OFF -DWITH_1394=OFF -DWITH_CUDA=OFF -DWITH_CUBLAS=OFF -DWITH_CUFFT=OFF -DWITH_OPENCLAMDBLAS=OFF -DWITH_OPENCLAMDFFT=OFF -DINSTALL_C_EXAMPLES=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_TO_MANGLED_PATHS=OFF -DBUILD_ANDROID_EXAMPLES=OFF -DBUILD_opencv_python=OFF -DBUILD_opencv_python_bindings_generator=OFF -DBUILD_opencv_apps=OFF -DBUILD_opencv_calib3d=OFF -DBUILD_opencv_features2d=OFF -DBUILD_opencv_flann=OFF -DBUILD_opencv_java_bindings_generator=OFF -DBUILD_opencv_js=OFF -DBUILD_opencv_ml=OFF -DBUILD_opencv_objdetect=OFF -DBUILD_opencv_photo=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_python_tests=OFF -DBUILD_opencv_shape=OFF -DBUILD_opencv_stitching=OFF -DBUILD_opencv_superres=OFF -DBUILD_opencv_ts=OFF -DBUILD_opencv_videostab=OFF -DBUILD_opencv_world=ON -DBUILD_opencv_dnn=ON -D WITH_FFMPEG=ON -D WITH_TIFF=OFF -D BUILD_TIFF=OFF -DWITH_FFMPEG=ON  -DFFMPEG_LIBRARIES=/usr/local/lib/ -D FFMPEG_INCLUDE_DIRS=/usr/local/include/ ..

make install

更改deepsort对应的cpp文件:

cpp 复制代码
#include <fstream>
#include <sstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include "YOLOv5Detector.h"

#include "FeatureTensor.h"
#include "BYTETracker.h" //bytetrack
#include "tracker.h"//deepsort
//Deep SORT parameter

const int nn_budget=100;
const float max_cosine_distance=0.2;

void get_detections(DETECTBOX box,float confidence,DETECTIONS& d)
{
    DETECTION_ROW tmpRow;
    tmpRow.tlwh = box;//DETECTBOX(x, y, w, h);

    tmpRow.confidence = confidence;
    d.push_back(tmpRow);
}


void test_deepsort(cv::Mat& frame, std::vector<detect_result>& results,tracker& mytracker)
{
    std::vector<detect_result> objects;

    DETECTIONS detections;
    for (detect_result dr : results)
    {
        //cv::putText(frame, classes[dr.classId], cv::Point(dr.box.tl().x+10, dr.box.tl().y - 10), cv::FONT_HERSHEY_SIMPLEX, .8, cv::Scalar(0, 255, 0));
        if(dr.classId == 0) //person
        {
            objects.push_back(dr);
            cv::rectangle(frame, dr.box, cv::Scalar(255, 0, 0), 2);
            get_detections(DETECTBOX(dr.box.x, dr.box.y,dr.box.width,  dr.box.height),dr.confidence,  detections);
        }
    }

    std::cout<<"begin track"<<std::endl;
    if(FeatureTensor::getInstance()->getRectsFeature(frame, detections))
    {
        std::cout << "get feature succeed!"<<std::endl;
        mytracker.predict();
        mytracker.update(detections);
        std::vector<RESULT_DATA> result;
        for(Track& track : mytracker.tracks) {
            if(!track.is_confirmed() || track.time_since_update > 1) continue;
            result.push_back(std::make_pair(track.track_id, track.to_tlwh()));
        }
        for(unsigned int k = 0; k < detections.size(); k++)
        {
            DETECTBOX tmpbox = detections[k].tlwh;
            cv::Rect rect(tmpbox(0), tmpbox(1), tmpbox(2), tmpbox(3));
            cv::rectangle(frame, rect, cv::Scalar(0,0,255), 4);
            // cvScalar的储存顺序是B-G-R,CV_RGB的储存顺序是R-G-B

            for(unsigned int k = 0; k < result.size(); k++)
            {
                DETECTBOX tmp = result[k].second;
                cv::Rect rect = cv::Rect(tmp(0), tmp(1), tmp(2), tmp(3));
                rectangle(frame, rect, cv::Scalar(255, 255, 0), 2);

                std::string label = cv::format("%d", result[k].first);
                cv::putText(frame, label, cv::Point(rect.x, rect.y), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(255, 255, 0), 2);
            }
        }
    }
    std::cout<<"end track"<<std::endl;
}


void test_bytetrack(cv::Mat& frame, std::vector<detect_result>& results,BYTETracker& tracker)
{
    std::vector<detect_result> objects;


    for (detect_result dr : results)
    {

        if(dr.classId == 0) //person
        {
            objects.push_back(dr);
        }
    }


    std::vector<STrack> output_stracks = tracker.update(objects);

    for (unsigned long i = 0; i < output_stracks.size(); i++)
    {
        std::vector<float> tlwh = output_stracks[i].tlwh;
        bool vertical = tlwh[2] / tlwh[3] > 1.6;
        if (tlwh[2] * tlwh[3] > 20 && !vertical)
        {
            cv::Scalar s = tracker.get_color(output_stracks[i].track_id);
            cv::putText(frame, cv::format("%d", output_stracks[i].track_id), cv::Point(tlwh[0], tlwh[1] - 5),
                    0, 0.6, cv::Scalar(0, 0, 255), 2, cv::LINE_AA);
            cv::rectangle(frame, cv::Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), s, 2);
        }
    }


}
int main(int argc, char *argv[])
{
    //deepsort
    tracker mytracker(max_cosine_distance, nn_budget);
    //bytetrack
    int fps=20;
    BYTETracker bytetracker(fps, 30);
    //-----------------------------------------------------------------------
    // 加载类别名称
    std::vector<std::string> classes;
    std::string file="./coco_80_labels_list.txt";
    std::ifstream ifs(file);
    if (!ifs.is_open())
        CV_Error(cv::Error::StsError, "File " + file + " not found");
    std::string line;
    while (std::getline(ifs, line))
    {
        classes.push_back(line);
    }
    //-----------------------------------------------------------------------

    std::cout<<"classes:"<<classes.size();
    std::shared_ptr<YOLOv5Detector> detector(new YOLOv5Detector());

    detector->init("/home/DeepSORT-master/DeepSORT-master/build/yolov5x.onnx");

    std::cout<<"begin read video"<<std::endl;
    const std::string source = "/home/DeepSORT-master/DeepSORT-master/build/test.mp4";
    cv::VideoCapture capture(source);

    if (!capture.isOpened()) {
        printf("could not read this video file...\n");
        return -1;
    }
    std::cout<<"end read video"<<std::endl;
    std::vector<detect_result> results;
    int num_frames = 0;

    cv::VideoWriter video("out.avi",cv::VideoWriter::fourcc('M','J','P','G'),10, cv::Size(1920,1080));

    while (true)
    {
        cv::Mat frame;


        if (!capture.read(frame)) // if not success, break loop
        {
            std::cout<<"\n Cannot read the video file. please check your video.\n";
            break;
        }

        num_frames ++;
        //Second/Millisecond/Microsecond  秒s/毫秒ms/微秒us
        auto start = std::chrono::system_clock::now();
        detector->detect(frame, results);
        auto end = std::chrono::system_clock::now();
        auto detect_time =std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();//ms
        std::cout<<classes.size()<<":"<<results.size()<<":"<<num_frames<<std::endl;


        //test_deepsort(frame, results,mytracker);
        test_bytetrack(frame, results,bytetracker);

        //cv::imshow("YOLOv5-6.x", frame);

        video.write(frame);

        if(cv::waitKey(30) == 27) // Wait for 'esc' key press to exit
        {
            break;
        }

        results.clear();


    }
    capture.release();
    video.release();
    cv::destroyAllWindows();


}

编译并运行:

相关推荐
看到我,请让我去学习1 小时前
OpenCV编程- (图像基础处理:噪声、滤波、直方图与边缘检测)
c语言·c++·人工智能·opencv·计算机视觉
冬天给予的预感2 小时前
DAY 54 Inception网络及其思考
网络·python·深度学习
董厂长6 小时前
langchain :记忆组件混淆概念澄清 & 创建Conversational ReAct后显示指定 记忆组件
人工智能·深度学习·langchain·llm
九年义务漏网鲨鱼9 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
xiaolang_8616_wjl10 小时前
c++文字游戏_闯关打怪2.0(开源)
开发语言·c++·开源
夜月yeyue10 小时前
设计模式分析
linux·c++·stm32·单片机·嵌入式硬件
蹦蹦跳跳真可爱58910 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
无小道11 小时前
c++-引用(包括完美转发,移动构造,万能引用)
c语言·开发语言·汇编·c++
白杆杆红伞伞12 小时前
T01_神经网络
人工智能·深度学习·神经网络
FirstFrost --sy12 小时前
数据结构之二叉树
c语言·数据结构·c++·算法·链表·深度优先·广度优先