大数据-Spark批处理实用广播Broadcast构建一个全局缓存Cache

1、broadcast广播

在Spark中,broadcast是一种优化技术,它可以将一个只读变量缓存到每个节点上,以便在执行任务时使用。这样可以避免在每个任务中重复传输数据。

2、构建缓存

scala 复制代码
import org.apache.spark.sql.SparkSession
import org.apache.spark.broadcast.Broadcast
import com.alibaba.fastjson.JSONObject

// 定义全局缓存单例对象
object GlobalCache extends Serializable {

  // 广播变量,用于存储缓存数据
  private var cacheData: Broadcast[collection.mutable.Map[String, JSONObject]] = _

  // 设置 SparkSession 和广播变量
  def setSparkSession(spark: SparkSession): Unit = {
    cacheData = spark.sparkContext.broadcast(collection.mutable.Map.empty[String, JSONObject])
  }


  // 按订单ID和用户ID缓存JSONObject对象
  def cacheJSONObject(orderId: String, userId: String, jsonObject: JSONObject): Unit = {
    // 获取广播变量的值并进行修改
    val data = cacheData.value
    data.synchronized {
      data.put(generateKey(orderId, userId), jsonObject)
    }
  }

  // 根据订单ID和用户ID删除缓存的JSONObject对象
  def removeJSONObject(orderId: String, userId: String): Unit = {
    // 获取广播变量的值并进行修改
    val data = cacheData.value
    data.synchronized {
      data.remove(generateKey(orderId, userId))
    }
  }

  // 根据订单ID和用户ID获取缓存的JSONObject对象
  def getJSONObjet(orderId: String, userId: String): JSONObject = {
    // 获取广播变量的值并进行访问
    val data = cacheData.value
    data.synchronized {
      data.get(generateKey(orderId, userId)).orNull
    }
  }

  // 生成缓存键,使用订单ID和用户ID拼接
  private def generateKey(orderId: String, userId: String): String = s"$orderId|$userId"
}

3、缓存测试

scala 复制代码
import org.apache.spark.sql.SparkSession
import org.apache.spark.broadcast.Broadcast
import com.alibaba.fastjson.JSONObject
import org.apache.log4j.{Level, Logger}

object CacheTest {
  Logger.getLogger("org").setLevel(Level.ERROR)
  Logger.getRootLogger().setLevel(Level.ERROR) // 设置日志级别


  def addItem(orderId:String, userId:String, name:String): Unit = {
    val jsonObject = new JSONObject()
    jsonObject.put("name", name)

    // 缓存JSONObject对象
    GlobalCache.cacheJSONObject(orderId, userId, jsonObject)
  }


  def getCache(orderId: String, userId: String): JSONObject = {
    // 获取缓存的JSONObject对象
    GlobalCache.getJSONObjet(orderId, userId)
  }

  def delItem(orderId:String, userId:String): Unit = {
    // 删除缓存的JSONObject对象
    GlobalCache.removeJSONObject(orderId, userId)
  }


  def getSparkSession(appName: String, localType: Int): SparkSession = {
    val builder: SparkSession.Builder = SparkSession.builder().appName(appName)
    if (localType == 1) {
      builder.master("local[8]") // 本地模式,启用8个核心
    }

    val spark = builder.getOrCreate() // 获取或创建一个新的SparkSession
    spark.sparkContext.setLogLevel("ERROR") // Spark设置日志级别
    spark
  }

  def main(args: Array[String]): Unit = {
    println("Start CacheTest")
    val spark: SparkSession = getSparkSession("CacheTest", 1)

    GlobalCache.setSparkSession(spark)  // 构造全局缓存

    addItem("001", "456", "苹果")      // 添加元素
    addItem("002", "789", "香蕉")      // 添加元素
    var cachedObject = getCache("001", "456")
    println(s"Cached Object: $cachedObject")

    delItem("001", "456")      // 删除元素
    cachedObject = getCache("001", "456")
    println(s"Cached Object: $cachedObject")
    spark.stop()
  }
}

4、控制台输出

bash 复制代码
Start CacheTest
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Cached Object: {"name":"苹果"}
Cached Object: null

Process finished with exit code 0
相关推荐
计算机编程-吉哥17 分钟前
大数据毕业设计-基于大数据的高考志愿填报推荐系统(高分计算机毕业设计选题·定制开发·真正大数据)
大数据·毕业设计·计算机毕业设计选题·机器学习毕业设计·大数据毕业设计·大数据毕业设计选题推荐·大数据毕设项目
武子康43 分钟前
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例
大数据·后端·spark
极造数字2 小时前
MES系统在不同制造行业中的应用差异与共性
大数据·人工智能·物联网·信息可视化·制造
时序数据说2 小时前
物联网时序数据库IoTDB是什么?
大数据·数据库·物联网·时序数据库·iotdb
时序数据说2 小时前
时序数据库:定义与基本特点
大数据·数据库·物联网·时序数据库
Agatha方艺璇3 小时前
CentOS7 Hive2.3.8 安装图文教程
大数据·数据库
EndingCoder3 小时前
离线应用开发:Service Worker 与缓存
前端·javascript·缓存·性能优化·electron·前端框架
云手机掌柜3 小时前
下一代社媒运营工具:亚矩阵云手机集成AIGC与数字人技术引领内容革命
大数据·线性代数·智能手机·矩阵·aigc
上海锝秉工控4 小时前
超声波风向传感器:以科技之翼,捕捉风的每一次呼吸
大数据·人工智能·科技
在未来等你7 小时前
Elasticsearch面试精讲 Day 13:索引生命周期管理ILM
大数据·分布式·elasticsearch·搜索引擎·面试