Pytorch(二)

一、分类任务

构建分类网络模型

  • 必须继承nn.Module且在其构造函数中需调用nn.Module的构造函数
  • 无需写反向传播函数,nn.Module能够利用autograd自动实现反向传播
  • Module中的可学习参数可以通过named_parameters()返回迭代器
python 复制代码
from torch import nn
import torch.nn.functional as F

# 构建自己的网络
class Mnist_NN(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden1 = nn.Linear(784,128)
        self.hidden2 = nn.Linear(128,256)
        self.out = nn.Linear(25,10)

    # 前向传播
    def forward(self,x):
        x = F.relu(self.hidden1(x))
        x = F.relu(self.hidden2(x))
        x = self.out(x)
        return x

net = Mnist_NN()
print(net)

# 打印定义好的名字里的权重和偏置项
for name,parameter in net.named_parameters():
    print(name,parameter,parameter.size())

二、Dataset与DataLoader

python 复制代码
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
from torch import optim

train_ds = TensorDataset(x_train,y_train)
train_dl = DataLoader(train_ds,batch_size=bs,shuffle=True)

valid_ds = TensorDataset(x_valid,y_valid)
valid_dl = DataLoader(valid_ds,batch_size=bs * 2)

def get_data(train_ds,valid_ds):
    return (
        DataLoader(train_ds,batch_size=bs,shuffle=True),
        DataLoader(valid_ds,batch_size=bs * 2),
    )

def get_model():
    model = Mnist_NN()
    return model,optim.SGD(model.parameters(),lr = 0.01)
train_dl,valid_dl = get_data(train_ds,valid_ds)
model,opt = get_model()

三、卷积神经网络

3.1卷积网络应用

  • 检测任务
  • 分类与检索
  • 超分辨率重构
  • 无人驾驶
  • 人脸识别

3.2卷积网络与传统网络的区别

左:传统神经网络

右:卷积神经网络

整体架构:

输入层:数据输入

卷积层:提取特征

池化层:压缩特征

全连接层:通过一组权重参数,将输入层与隐层连接起来

卷积之后得到的值要加上偏置值bias

卷积层涉及参数:

  • 滑动窗口步长:窗口移动跳跃的格数
  • 卷积核尺寸:例3*3
  • 边缘填充:
  • 卷积核个数:

3.3 池化层:

最大池化:

3.4卷积网络的构建

  • 一般卷积层,relu层,池化层可以写成一个套餐
  • 注意卷积最后结构还是一个特征图,需要把图转换成向量才能做分类或者回归任务

案例代码如下:

python 复制代码
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(
                in_channels=1, #灰度图
                out_channels=16, #要得到多少个特征图
                kernel_size=5, #卷积核大小
                stride=1, #步长
                padding=2,
            ),
            nn.ReLU(), #relu层
            nn.MaxPool2d(kernel_size=2),  #进行池化操作
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(16,32,5,1,2), #输出(32,14,14)
            nn.ReLU(),
            nn.MaxPool2d(2),
        )
        self.out = nn.Linear(32 * 7 * 7 * 10)  #全连接层得到的结果

    def forward(self,x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size(0),-1)
        output = self.out(x)
        return output
相关推荐
余弦的倒数7 分钟前
知识蒸馏和迁移学习的区别
人工智能·机器学习·迁移学习
Allen Bright7 分钟前
【机器学习-线性回归-2】理解线性回归中的连续值与离散值
人工智能·机器学习·线性回归
weixin_贾15 分钟前
最新AI-Python机器学习与深度学习技术在植被参数反演中的核心技术应用
python·机器学习·植被参数·遥感反演
张槊哲25 分钟前
函数的定义与使用(python)
开发语言·python
船长@Quant29 分钟前
文档构建:Sphinx全面使用指南 — 实战篇
python·markdown·sphinx·文档构建
青松@FasterAI1 小时前
【程序员 NLP 入门】词嵌入 - 上下文中的窗口大小是什么意思? (★小白必会版★)
人工智能·自然语言处理
AIGC大时代1 小时前
高效使用DeepSeek对“情境+ 对象 +问题“型课题进行开题!
数据库·人工智能·算法·aigc·智能写作·deepseek
硅谷秋水1 小时前
GAIA-2:用于自动驾驶的可控多视图生成世界模型
人工智能·机器学习·自动驾驶
偶尔微微一笑1 小时前
AI网络渗透kali应用(gptshell)
linux·人工智能·python·自然语言处理·编辑器
深度之眼2 小时前
2025时间序列都有哪些创新点可做——总结篇
人工智能·深度学习·机器学习·时间序列