常见距离计算的Python实现

常见的距离有曼哈顿距离、欧式距离、切比雪夫距离、闵可夫斯基距离、汉明距离、余弦距离等,用Python实现计算的方式有多种,可以直接构造公式计算,也可以利用内置线性代数函数计算,还可以利用scipy库计算。

1.曼哈顿距离

也叫城市街区距离,是两点差向量的L1范数,也就是各元素的绝对值之和。A(x1,x2,...,xn)和B(y1,y2,...,yn)之间的曼哈顿距离表示为
d = ∑ i = 1 n ∣ x i − y i ∣ d=\sum_{i=1}^{n}{\left| x_i-y_i \right|} d=i=1∑n∣xi−yi∣

Python实现:

python 复制代码
import numpy as np
from scipy.spatial import distance

A = np.array([1,2,3])
B = np.array([4,5,6])

# 方式一:直接构造公式计算
dist1 = np.sum(np.abs(A-B))

# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=1)  #ord为范数类型,取值1(一范数),2(二范数),np.inf(无穷范数),默认2。

# 方式三:scipy库计算
dist3 = distance.cityblock(A,B)

2.欧式距离

是一种最常见的距离,也就是两点差向量的L2范数。A(x1,x2,...,xn)和B(y1,y2,...,yn)之间的欧式距离表示为
d = ∑ i = 1 n ( x i − y i ) 2 d=\sqrt{\sum_{i=1}^{n}{\left( x_i-y_i \right)^{2}}} d=i=1∑n(xi−yi)2

Python实现:

python 复制代码
import numpy as np
from scipy.spatial import distance

A = np.array([1,2,3])
B = np.array([4,5,6])

# 方式一:直接构造公式计算
dist1 = np.sqrt(np.sum((A-B)**2))

# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=2)

# 方式三:scipy库计算
dist3 = distance.euclidean(A,B)

3.切比雪夫距离

最大的维度内距离,是两点差向量的无穷范数。A(x1,x2,...,xn)和B(y1,y2,...,yn)之间的切比雪夫距离表示为
d = m a x ( ∣ x i − y i ∣ ) d=max\left( \left| x_i-y_i \right| \right) d=max(∣xi−yi∣)
Python实现:

python 复制代码
import numpy as np
from scipy.spatial import distance

A = np.array([1,2,3])
B = np.array([4,5,6])

# 方式一:直接构造公式计算
dist1 = np.max(np.abs(A-B))

# 方式二:内置线性代数函数计算
dist2 = np.linalg.norm(A-B,ord=np.inf)

# 方式三:scipy库计算
dist3 = distance.chebyshev(A,B)

4. 闵可夫斯基距离

是一种范式距离的统称,可表示为两点差向量的Lp范数。A(x1,x2,...,xn)和B(y1,y2,...,yn)之间的闵可夫斯基距离表示为
d = ∑ i = 1 n ∣ x i − y i ∣ p p d=\sqrt[p]{\sum_{i=1}^{n}{\left| x_i-y_i \right|^{p}}} d=pi=1∑n∣xi−yi∣p
Python实现:

python 复制代码
import numpy as np
from scipy.spatial import distance

A = np.array([1,2,3])
B = np.array([4,5,6])

# 方式一:内置线性代数函数计算
dist1 = np.linalg.norm(A-B,ord=3)  # np.linalg.norm(A-B,ord=p)

# 方式二:scipy库计算
dist2 = distance.minkowski(A,B,3)  # distance.minkowski(A,B,p)

5.汉明距离

衡量两个字符串之间的差异程度,对两个对象的向量元素逐个比较,差异的个数占总个数的比例。A(x1,x2,...,xn)和B(y1,y2,...,yn)之间的汉明距离表示为
d = 1 n ∑ i = 1 n I ( x i ≠ y i ) d=\frac{1}{n}\sum_{i=1}^{n}{I\left( x_i\ne y_i \right)} d=n1i=1∑nI(xi=yi)

其中I为指示函数,
I = { 1 i f ( x i ≠ y i ) 0 i f ( x i = y i ) \begin{equation} I= \left\{ \begin{array}{lr} 1 \quad if\left( x_i\ne y_i \right)&\\ 0 \quad if\left( x_i = y_i\right) \end{array} \right. \end{equation} I={1if(xi=yi)0if(xi=yi)
Python实现:

python 复制代码
import numpy as np
from scipy.spatial import distance

A = np.array([1,2,3])
B = np.array([4,5,6])

# 方式一:scipy库计算
dist1 = distance.hamming(A,B)

6.余弦距离

也叫余弦相似度,是两点空间向量夹角的余弦值,是内积与模积的比值,用来衡量两向量间的差异程度。A(x1,x2,...,xn)和B(y1,y2,...,yn)之间的余弦距离表示为
d = c o s θ = < A , B > ∣ A ∣ ⋅ ∣ B ∣ = ∑ i = 1 n x i y i ∑ i = 1 n x i 2 ⋅ ∑ i = 1 n y i 2 \begin{align} d&=cos\theta=\frac{<A,B>}{\left| A \right|\cdot\left| B \right|} \\ &=\frac{\sum_{i=1}^{n}{x_iy_i}}{\sqrt{\sum_{i=1}^{n}{x_i^{2}}}\cdot\sqrt{\sum_{i=1}^{n}{y_i^{2}}}} \end{align} d=cosθ=∣A∣⋅∣B∣<A,B>=∑i=1nxi2 ⋅∑i=1nyi2 ∑i=1nxiyi
Python实现:

python 复制代码
import numpy as np
from scipy.spatial import distance

A = np.array([1,2,3])
B = np.array([4,5,6])

# 方式一:直接构造公式计算
dist1 = np.sum(A*B)/(np.sqrt(np.sum(A**2))*np.sqrt(np.sum(B**2)))

# 方式二:scipy库计算
dist2 = 1-distance.cosine(A,B)

End.

参考:

https://blog.csdn.net/lemonbit/article/details/129053257

相关推荐
paixiaoxin2 分钟前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
Dream_Snowar14 分钟前
速通Python 第四节——函数
开发语言·python·算法
西猫雷婶16 分钟前
python学opencv|读取图像(十四)BGR图像和HSV图像通道拆分
开发语言·python·opencv
Altair澳汰尔27 分钟前
数据分析和AI丨知识图谱,AI革命中数据集成和模型构建的关键推动者
人工智能·算法·机器学习·数据分析·知识图谱
call me by ur name1 小时前
VLM--CLIP作分类任务的损失函数
人工智能·机器学习·分类
汪洪墩1 小时前
【Mars3d】设置backgroundImage、map.scene.skyBox、backgroundImage来回切换
开发语言·javascript·python·ecmascript·webgl·cesium
Python机器学习AI1 小时前
分类模型的预测概率解读:3D概率分布可视化的直观呈现
算法·机器学习·分类
dwjf3212 小时前
机器学习(四)-回归模型评估指标
人工智能·机器学习·线性回归
程序员shen1616112 小时前
抖音短视频saas矩阵源码系统开发所需掌握的技术
java·前端·数据库·python·算法