深度学习:BatchNorm、LayerNorm、InstanceNorm、GroupNorm和SwitchableNorm的理解

深度学习:BatchNorm、LayerNorm、InstanceNorm、GroupNorm和SwitchableNorm的理解

深度学习中的Norm

在深度学习中会经常遇到BatchNorm、LayerNorm、InstanceNorm和GroupNorm,四者区别如下:

除此之外还有SwitchableNorm的方法,下面会逐一进行介绍。

BatchNorm

BatchNorm 的处理对象是对一批样本同一个通道特征,BatchNorm 是对这批样本的同一维度特征计算均值和方差做归一化,BatchNorm在CV领域应用较多。

BatchNorm的好处有以下三点:

1、提高梯度在网络中的流动。Normalization能够使特征全部缩放到[0,1],这样在反向传播时候的梯度都是在1左右,避免了梯度消失现象。

2、提升学习速率。归一化后的数据能够快速的达到收敛。

3、减少模型训练对初始化的依赖。

LayerNorm

LayerNorm 的处理对象是每单个样本所有通道特征,LayerNorm 是对这单个样本的所有维度特征计算均值和方差做归一化。LayerNorm在NLP领域应用较多。

由于不同维度的特征量纲往往不同,那么我们为什么还要使用LayerNorm呢?因为NLP领域中,LayerNorm更为合适。

如果我们将一批文本组成一个batch,那么BatchNorm是对每句话的同一维特征(同一个位置)进行操作,而我们理解文本是一句话一句话地阅读,这不符合NLP的规律。

而LayerNorm则是针对一句话进行归一化的,且LayerNorm一般用在第三维度,如[batchsize, seq_len, dims]中的dims,一般为词向量的维度等等,这一维度各个特征的量纲应该相同。因此也不会遇到上面因为特征的量纲不同而导致的归一化缩放问题。

InstanceNorm

InstanceNorm的处理对象是每单个样本同一个通道特征,InstanceNorm是对单个样本同一个维度特征计算均值和方差做归一化,InstanceNorm在风格化迁移应用较多。

因为在图像风格化中,生成结果主要依赖于某个图像实例,所以对整个batch归一化不适合图像风格化中,因而对HW做归一化。可以加速模型收敛,并且保持每个图像实例之间的独立。

GroupNorm

GroupNorm的处理对象是每单个样本同一组通道特征,GroupNorm是对单个样本同一组维度特征计算均值和方差做归一化。

SwitchableNorm

SwitchableNorm是将BatchNorm、LayerNorm、InstanceNorm结合,赋予不同的权重,让网络自适应地学习归一化层。

附录

Pytorch官网------Normalization Layers

相关推荐
脑极体3 分钟前
云厂商的AI决战
人工智能
njsgcs21 分钟前
NVIDIA NitroGen 是强化学习还是llm
人工智能
知乎的哥廷根数学学派1 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
mantch1 小时前
Nano Banana进行AI绘画中文总是糊?一招可重新渲染,清晰到可直接汇报
人工智能·aigc
编程小白_正在努力中1 小时前
第1章 机器学习基础
人工智能·机器学习
wyw00002 小时前
目标检测之SSD
人工智能·目标检测·计算机视觉
AKAMAI2 小时前
圆满循环:Akamai 的演进如何为 AI 推理时代奠定基石
人工智能·云计算
幻云20102 小时前
AI自动化编排:从入门到精通(基于Dify构建AI智能系统)
运维·人工智能·自动化
CoderJia程序员甲2 小时前
GitHub 热榜项目 - 日榜(2026-1-13)
人工智能·ai·大模型·github·ai教程
梦梦代码精2 小时前
《全栈开源智能体:终结企业AI拼图时代》
人工智能·后端·深度学习·小程序·前端框架·开源·语音识别