DP学习第六篇之下降路径最小和

DP学习第六篇之下降路径最小和

931. 下降路径最小和 - 力扣(LeetCode)

一.题目解析

二. 算法原理

  1. 状态表示

tips: 经验+题目要求。以[i,j]位置为结尾,。。。

dp[i][j]: 到达[i, j]位置时,此时的最小下降路径和

  1. 状态转移方程

tips: 用之前或之后的状态,推导出dp[i]的值。根据最近的一步,来划分问题

到达[i, j]位置之前:

  • 从[i - 1, j]位置向下走一步,到[i, j]

  • 从[i - 1, j - 1]位置向右下↘走一步,到[i, j]

  • 从[i - 1, j + 1]位置向左下↙走一步,到[i, j]

    即:dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - 1], dp[i - 1][j + 1]) + m[i][j]

  1. 初始化

tips: 保证填表的时候不越界。增加虚拟节点

  • 虚拟节点里面的值,要保证后面填表是正确的

要保证填表的正确性,即第一行的dp值应该等于m值,因此其依赖的虚拟节点应该为0。对于左右两侧,也要保证虚拟节点的值不影响正确性,应取正无穷

  • 下标的映射关系

dp表映射到原矩阵:横纵坐标-1

  1. 填表顺序

从左往右每一行,从上往下整个表

  1. 返回值

题目要求:到最后一行的最小路径和

即:返回最后一行dp表中的最小值

三. 编写代码

c++ 复制代码
class Solution {
public:
    int minFallingPathSum(vector<vector<int>>& matrix) {
        //1.创建dp表
        //2.初始化
        //3.填表
        //4.返回值
        int n = matrix.size();
        vector<vector<int>> dp(n + 1, vector<int>(n + 2, INT_MAX));

        for(int i = 0; i < n + 2; ++i)
            dp[0][i] = 0;
        
        for(int i = 1; i <= n ; ++i)
            for(int j = 1; j <= n; ++j)
                dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j + 1], dp[i - 1][j - 1])) 
                            + matrix[i - 1][j - 1];
            
        int mi = dp[n][1];
        for(int i = 2; i <= n; ++i)
            mi = min(mi, dp[n][i]);
        return mi;
    }   
};

🦀🦀观看~~

相关推荐
CoovallyAIHub5 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub5 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v1 天前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农1 天前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了1 天前
AcWing学习——双指针算法
c++·算法
moonlifesudo1 天前
322:零钱兑换(三种方法)
算法
NAGNIP2 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队2 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法