unity行为决策树实战详解

一、行为决策树的概念

行为决策树是一种用于游戏AI的决策模型,它将游戏AI的行为分解为一系列的决策节点,并通过节点之间的连接关系来描述游戏AI的行为逻辑。在行为决策树中,每个节点都代表一个行为或决策,例如移动、攻击、逃跑等,而节点之间的连接关系则代表了不同行为之间的优先级和逻辑关系。

对啦!这里有个游戏开发交流小组里面聚集了一帮热爱学习游戏的零基础小白,也有一些正在从事游戏开发的技术大佬,欢迎你来交流学习。

二、行为决策树的实现

在Unity中,我们可以使用Behavior Designer插件来实现行为决策树。Behavior Designer是Unity中一款强大的行为树编辑器,它提供了丰富的节点和条件,可以帮助我们轻松地设计和实现游戏中的AI。

下面我们将以一个简单的示例来介绍如何使用Behavior Designer插件实现行为决策树。

  1. 创建一个新的行为决策树
  1. 添加节点

接下来,我们需要向行为决策树中添加节点。在Behavior Designer中,节点分为行为节点和条件节点两种类型。行为节点用于执行具体的行为或任务,例如移动、攻击、逃跑等,而条件节点用于判断当前的状态或环境,例如是否有敌人、是否受到攻击等。

  1. 连接节点

添加完节点之后,我们需要通过连接节点来描述游戏AI的行为逻辑。在Behavior Designer中,我们可以通过拖拽节点来连接节点,从而描述它们之间的优先级和逻辑关系。

  1. 调整节点属性

在连接节点之后,我们需要调整节点的属性,以便它们能够正确地执行游戏AI的行为逻辑。在Behavior Designer中,我们可以通过选中节点来打开节点的属性面板,并调整对应的属性值。

  1. 运行行为决策树

三、行为决策树的代码实现

除了使用Behavior Designer插件外,我们还可以通过代码来实现行为决策树。在Unity中,我们可以使用C#语言来编写行为决策树的代码,从而实现游戏AI的行为控制。

下面我们将以一个简单的示例来介绍如何使用C#语言实现行为决策树。

  1. 创建一个新的行为决策树类

首先,我们需要创建一个新的行为决策树类,并继承自MonoBehaviour类。在行为决策树类中,我们可以定义行为节点和条件节点,并通过节点之间的连接关系来描述游戏AI的行为逻辑。

复制代码
public class BehaviorTree : MonoBehaviour
{
    // 行为节点
    public abstract class ActionNode
    {
        public abstract bool Execute();
    }

    // 条件节点
    public abstract class ConditionNode
    {
        public abstract bool Check();
    }
}
  1. 实现行为节点和条件节点
复制代码
public class BehaviorTree : MonoBehaviour
{
    // 行为节点
    public abstract class ActionNode
    {
        public abstract bool Execute();
    }

    // 条件节点
    public abstract class ConditionNode
    {
        public abstract bool Check();
    }
}
  1. 连接节点

实现完行为节点和条件节点后,我们需要通过连接节点来描述游戏AI的行为逻辑。在代码中,我们可以使用列表来存储节点,并通过节点之间的连接关系来描述它们之间的优先级和逻辑关系。

复制代码
public class BehaviorTree : MonoBehaviour
{
    // 行为节点
    public abstract class ActionNode
    {
        public abstract bool Execute();
    }

    // 条件节点
    public abstract class ConditionNode
    {
        public abstract bool Check();
    }

    // 节点列表
    private List<Node> nodes = new List<Node>();

    // 节点连接关系
    private class Node
    {
        public ActionNode actionNode;
        public ConditionNode conditionNode;
        public List<Node> children = new List<Node>();
    }
}
  1. 调整节点属性

连接节点之后,我们需要调整节点的属性,以便它们能够正确地执行游戏AI的行为逻辑。在代码中,我们可以在节点类中添加对应的属性,并在节点的执行方法中使用它们。

复制代码
public class MoveNode : ActionNode
{
    public Transform target;

    public override bool Execute()
    {
        // 移动逻辑
        return true;
    }
}

public class HasEnemyNode : ConditionNode
{
    public Transform target;

    public override bool Check()
    {
        // 判断是否有敌人
        return true;
    }
}
  1. 运行行为决策树

最后,我们需要将行为决策树与游戏中的AI进行关联,并运行它。在代码中,我们可以在AI类中创建行为决策树对象,并在AI的Update方法中调用行为决策树的执行方法,从而实现游戏AI的行为控制。

复制代码
public class MoveNode : ActionNode
{
    public Transform target;

    public override bool Execute()
    {
        // 移动逻辑
        return true;
    }
}

public class HasEnemyNode : ConditionNode
{
    public Transform target;

    public override bool Check()
    {
        // 判断是否有敌人
        return true;
    }
}
相关推荐
玉梅小洋2 小时前
Unity Muse 完整使用文档:Sprite+Texture专项
unity·ai·游戏引擎
能源革命3 小时前
Three.js、Unity、Cesium对比分析
开发语言·javascript·unity
(; ̄ェ ̄)。4 小时前
机器学校入门(十三)C4.5 决策树,CART决策树
算法·决策树·机器学习
好奇龙猫5 小时前
【大学院-筆記試験練習:线性代数和数据结构(16)】
数据结构·线性代数·决策树
永远都不秃头的程序员(互关)5 小时前
【决策树深度探索(五)】智慧之眼:信息增益,如何找到最佳决策问题?
算法·决策树·机器学习
(; ̄ェ ̄)。6 小时前
机器学习入门(十四)CART回归树、决策树剪枝
决策树·机器学习·回归
永远都不秃头的程序员(互关)8 小时前
【决策树深度探索(四)】揭秘“混乱”:香农熵与信息纯度的量化之旅
算法·决策树·机器学习
永远都不秃头的程序员(互关)8 小时前
【决策树深度探索(三)】树的骨架:节点、分支与叶子,构建你的第一个分类器!
算法·决策树·机器学习
永远都不秃头的程序员(互关)1 天前
【决策树深度探索(二)】决策树入门:像人类一样决策,理解算法核心原理!
算法·决策树·机器学习
timathy331 天前
Unity Addressable 实现Build时自定义剔除资源组
unity·游戏引擎