Matplotlib基础-样式表

Matplotlib库 由于诞生的比较早,所以其默认的显示样式很难符合现在的审美,这也是它经常为人诟病的地方。

不过,经过版本更迭之后,现在 Matplotlib 已经内置了很多样式表,

通过使用不同的样式表,可以整体改变绘制图形的风格,不用再调整一个个显示参数。

1. 样式表的使用

1.1. 所有内置样式表

首先,查看内置的样式表有哪些:

python 复制代码
import matplotlib.pyplot as plt

plt.style.available

1.2. 使用样式表的方式

使用样式表的方式有两种:

一种是全局样式表设置,比如:

python 复制代码
plt.style.use("ggplot")

随后的代码中,所有绘制的图形都是 ggplot 风格。

另一种局部样式表设置,比如:

python 复制代码
with plt.style.context("classic"):
    # 绘制图形
    pass

这种方式,样式表只在 with 范围内生效。

2. 不同样式表的效果

下面演示几种风格差异比较大的样式表。

首先,封装一个绘制图形的函数。

python 复制代码
def draw():
    x = np.array(range(10))
    y = np.random.randint(10, 100, 10)
    
    fig = plt.figure(figsize=[6,4])
    fig.add_subplot(211)
    plt.plot(x, y)
    
    fig.add_subplot(212)
    plt.hist(y)

2.1. classic 风格

python 复制代码
with plt.style.context("classic"):
    draw()

2.2. Solarize_Light2 风格

python 复制代码
with plt.style.context("Solarize_Light2"):
    draw()

2.3. bmh 风格

python 复制代码
with plt.style.context("bmh"):
    draw()

2.4. dark_background 风格

python 复制代码
with plt.style.context("dark_background"):
    draw()	

2.5. fast 风格

python 复制代码
with plt.style.context("fast"):
    draw()

2.6. ggplot 风格

python 复制代码
with plt.style.context("ggplot"):
    draw()

2.7. seaborn 风格

seaborn是公认颜值比较高的绘图库,所以 Matplotlib 也支持很多种seaborn风格。

这里使用的是默认的 seaborn 风格。

python 复制代码
with plt.style.context("seaborn-v0_8"):
    draw()

3. 总结

内置的样式表方便易用,提供了许多预定义的样式,可以快速帮助我们创建美观的图表。

使用内置的样式表还有个好处是可以保持图表的统一风格,使得图表具有更高的可读性和可维护性。

Matplotlib提供的丰富的样式表,可以满足不同类型的绘图需求,并且还可以通过自定义样式表来实现更加个性化的绘图效果。

相关推荐
spssau21 小时前
SPSSAU「质量控制」模块:从可视化监控到过程优化,一站式搞定质量难题
信息可视化·数据挖掘·数据分析
明月说数据1 天前
Smartbi 10 月版本亮点:AIChat对话能力提升,国产化部署更安全
ai·数据分析·版本更新
@小红花1 天前
Tableau 从零到精通:系统教学文档(自学版)
信息可视化·数据挖掘·数据分析
我是小邵1 天前
主流数据分析工具全景对比:Excel / Python / R / Power BI / Tableau / Qlik / Snowflake
python·数据分析·excel
慧都小项2 天前
数据驱动的架构设计:通过Enterprise Architect实现基于UML的架构治理
数据分析·数据架构·sparx ea
人大博士的交易之路2 天前
龙虎榜——20251031
大数据·数学建模·数据分析·缠论·缠中说禅·龙虎榜·道琼斯结构
qingyunliushuiyu2 天前
数据分析平台:驱动智能决策的利器
低代码·数据挖掘·数据分析·数据分析系统·数据分析平台
SelectDB技术团队2 天前
货拉拉用户画像基于 Apache Doris 的数据模型设计与实践
数据分析·汽车·apache·用户画像·货拉拉
Wnq100722 天前
AI 在法律咨询服务中的革命性变化:技术赋能与生态重构
人工智能·职场和发展·重构·分类·数据分析·全文检索·创业创新
JZC_xiaozhong2 天前
异构系统集成提速:重构企业数据流转架构
大数据·重构·架构·数据分析·etl工程师·数据集成与应用集成·异构数据整合