Matplotlib基础-样式表

Matplotlib库 由于诞生的比较早,所以其默认的显示样式很难符合现在的审美,这也是它经常为人诟病的地方。

不过,经过版本更迭之后,现在 Matplotlib 已经内置了很多样式表,

通过使用不同的样式表,可以整体改变绘制图形的风格,不用再调整一个个显示参数。

1. 样式表的使用

1.1. 所有内置样式表

首先,查看内置的样式表有哪些:

python 复制代码
import matplotlib.pyplot as plt

plt.style.available

1.2. 使用样式表的方式

使用样式表的方式有两种:

一种是全局样式表设置,比如:

python 复制代码
plt.style.use("ggplot")

随后的代码中,所有绘制的图形都是 ggplot 风格。

另一种局部样式表设置,比如:

python 复制代码
with plt.style.context("classic"):
    # 绘制图形
    pass

这种方式,样式表只在 with 范围内生效。

2. 不同样式表的效果

下面演示几种风格差异比较大的样式表。

首先,封装一个绘制图形的函数。

python 复制代码
def draw():
    x = np.array(range(10))
    y = np.random.randint(10, 100, 10)
    
    fig = plt.figure(figsize=[6,4])
    fig.add_subplot(211)
    plt.plot(x, y)
    
    fig.add_subplot(212)
    plt.hist(y)

2.1. classic 风格

python 复制代码
with plt.style.context("classic"):
    draw()

2.2. Solarize_Light2 风格

python 复制代码
with plt.style.context("Solarize_Light2"):
    draw()

2.3. bmh 风格

python 复制代码
with plt.style.context("bmh"):
    draw()

2.4. dark_background 风格

python 复制代码
with plt.style.context("dark_background"):
    draw()	

2.5. fast 风格

python 复制代码
with plt.style.context("fast"):
    draw()

2.6. ggplot 风格

python 复制代码
with plt.style.context("ggplot"):
    draw()

2.7. seaborn 风格

seaborn是公认颜值比较高的绘图库,所以 Matplotlib 也支持很多种seaborn风格。

这里使用的是默认的 seaborn 风格。

python 复制代码
with plt.style.context("seaborn-v0_8"):
    draw()

3. 总结

内置的样式表方便易用,提供了许多预定义的样式,可以快速帮助我们创建美观的图表。

使用内置的样式表还有个好处是可以保持图表的统一风格,使得图表具有更高的可读性和可维护性。

Matplotlib提供的丰富的样式表,可以满足不同类型的绘图需求,并且还可以通过自定义样式表来实现更加个性化的绘图效果。

相关推荐
安替-AnTi1 小时前
基于 React 和 TypeScript 搭建的机器学米其林餐厅数据分析项目
react.js·typescript·数据分析·毕设·米其林
JIAKSK6 小时前
VitePress 接入百度统计:全面教程与优化指南
运维·数据可视化
秀儿还能再秀14 小时前
基于Excel的数据分析思维与分析方法
数据分析·excel
好开心啊没烦恼18 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
涤生大数据21 小时前
Apache Spark 4.0:将大数据分析提升到新的水平
数据分析·spark·apache·数据开发
可观测性用观测云1 天前
Pipeline 引用外部数据源最佳实践
数据分析
大数据CLUB1 天前
基于spark的奥运会奖牌变化数据分析
大数据·hadoop·数据分析·spark
datagear1 天前
如何在DataGear 5.4.1 中快速制作HTTP数据源服务端分页的数据表格看板
javascript·数据可视化
好开心啊没烦恼1 天前
Python 数据分析:计算,分组统计1,df.groupby()。听故事学知识点怎么这么容易?
开发语言·python·数据挖掘·数据分析·pandas
wenzhangli72 天前
OneCode 图表组件核心优势解析
数据可视化