Matplotlib基础-样式表

Matplotlib库 由于诞生的比较早,所以其默认的显示样式很难符合现在的审美,这也是它经常为人诟病的地方。

不过,经过版本更迭之后,现在 Matplotlib 已经内置了很多样式表,

通过使用不同的样式表,可以整体改变绘制图形的风格,不用再调整一个个显示参数。

1. 样式表的使用

1.1. 所有内置样式表

首先,查看内置的样式表有哪些:

python 复制代码
import matplotlib.pyplot as plt

plt.style.available

1.2. 使用样式表的方式

使用样式表的方式有两种:

一种是全局样式表设置,比如:

python 复制代码
plt.style.use("ggplot")

随后的代码中,所有绘制的图形都是 ggplot 风格。

另一种局部样式表设置,比如:

python 复制代码
with plt.style.context("classic"):
    # 绘制图形
    pass

这种方式,样式表只在 with 范围内生效。

2. 不同样式表的效果

下面演示几种风格差异比较大的样式表。

首先,封装一个绘制图形的函数。

python 复制代码
def draw():
    x = np.array(range(10))
    y = np.random.randint(10, 100, 10)
    
    fig = plt.figure(figsize=[6,4])
    fig.add_subplot(211)
    plt.plot(x, y)
    
    fig.add_subplot(212)
    plt.hist(y)

2.1. classic 风格

python 复制代码
with plt.style.context("classic"):
    draw()

2.2. Solarize_Light2 风格

python 复制代码
with plt.style.context("Solarize_Light2"):
    draw()

2.3. bmh 风格

python 复制代码
with plt.style.context("bmh"):
    draw()

2.4. dark_background 风格

python 复制代码
with plt.style.context("dark_background"):
    draw()	

2.5. fast 风格

python 复制代码
with plt.style.context("fast"):
    draw()

2.6. ggplot 风格

python 复制代码
with plt.style.context("ggplot"):
    draw()

2.7. seaborn 风格

seaborn是公认颜值比较高的绘图库,所以 Matplotlib 也支持很多种seaborn风格。

这里使用的是默认的 seaborn 风格。

python 复制代码
with plt.style.context("seaborn-v0_8"):
    draw()

3. 总结

内置的样式表方便易用,提供了许多预定义的样式,可以快速帮助我们创建美观的图表。

使用内置的样式表还有个好处是可以保持图表的统一风格,使得图表具有更高的可读性和可维护性。

Matplotlib提供的丰富的样式表,可以满足不同类型的绘图需求,并且还可以通过自定义样式表来实现更加个性化的绘图效果。

相关推荐
思迈特Smartbi6 小时前
思迈特软件斩获鲲鹏应用创新大赛(华南赛区) “最佳原生创新奖”
人工智能·ai·数据分析·bi·商业智能
码银9 小时前
【数据分析】基于工作与生活平衡及寿命数据集的数据分析与可视化
数据挖掘·数据分析·生活
我是哈哈hh10 小时前
【Python数据分析】数据可视化(全)
开发语言·python·信息可视化·数据挖掘·数据分析
大数据魔法师11 小时前
昆明天气数据分析与挖掘(三)- 昆明天气数据可视化分析
信息可视化·数据分析·finebi
2501_9216494921 小时前
免费获取股票历史行情与分时K线数据 API
开发语言·后端·python·金融·数据分析
职业码农NO.11 天前
智能体推理范式: Plan-and-Execute(规划与执行)
人工智能·python·数据分析·系统架构·知识图谱·agent·集成学习
咕噜企业分发小米1 天前
阿里云基因测序数据分析平台有哪些成功案例?
阿里云·数据分析·云计算
织元Zmetaboard1 天前
物联网大屏:从数据可视化到智能决策的进化之路
物联网·三维可视化·数据可视化·大屏
CryptoPP1 天前
印度股票市场数据获取与分析实战:基于RESTful API与Python
数据挖掘·数据分析
过期的秋刀鱼!1 天前
Excel-数据分析开发心得(工具PQ,PP)与开发经验
大数据·数据分析·excel·模型搭建·数据优化·powerquery·powerpivot