Matplotlib基础-样式表

Matplotlib库 由于诞生的比较早,所以其默认的显示样式很难符合现在的审美,这也是它经常为人诟病的地方。

不过,经过版本更迭之后,现在 Matplotlib 已经内置了很多样式表,

通过使用不同的样式表,可以整体改变绘制图形的风格,不用再调整一个个显示参数。

1. 样式表的使用

1.1. 所有内置样式表

首先,查看内置的样式表有哪些:

python 复制代码
import matplotlib.pyplot as plt

plt.style.available

1.2. 使用样式表的方式

使用样式表的方式有两种:

一种是全局样式表设置,比如:

python 复制代码
plt.style.use("ggplot")

随后的代码中,所有绘制的图形都是 ggplot 风格。

另一种局部样式表设置,比如:

python 复制代码
with plt.style.context("classic"):
    # 绘制图形
    pass

这种方式,样式表只在 with 范围内生效。

2. 不同样式表的效果

下面演示几种风格差异比较大的样式表。

首先,封装一个绘制图形的函数。

python 复制代码
def draw():
    x = np.array(range(10))
    y = np.random.randint(10, 100, 10)
    
    fig = plt.figure(figsize=[6,4])
    fig.add_subplot(211)
    plt.plot(x, y)
    
    fig.add_subplot(212)
    plt.hist(y)

2.1. classic 风格

python 复制代码
with plt.style.context("classic"):
    draw()

2.2. Solarize_Light2 风格

python 复制代码
with plt.style.context("Solarize_Light2"):
    draw()

2.3. bmh 风格

python 复制代码
with plt.style.context("bmh"):
    draw()

2.4. dark_background 风格

python 复制代码
with plt.style.context("dark_background"):
    draw()	

2.5. fast 风格

python 复制代码
with plt.style.context("fast"):
    draw()

2.6. ggplot 风格

python 复制代码
with plt.style.context("ggplot"):
    draw()

2.7. seaborn 风格

seaborn是公认颜值比较高的绘图库,所以 Matplotlib 也支持很多种seaborn风格。

这里使用的是默认的 seaborn 风格。

python 复制代码
with plt.style.context("seaborn-v0_8"):
    draw()

3. 总结

内置的样式表方便易用,提供了许多预定义的样式,可以快速帮助我们创建美观的图表。

使用内置的样式表还有个好处是可以保持图表的统一风格,使得图表具有更高的可读性和可维护性。

Matplotlib提供的丰富的样式表,可以满足不同类型的绘图需求,并且还可以通过自定义样式表来实现更加个性化的绘图效果。

相关推荐
cver1232 小时前
足球视频检测数据集介绍-160张图片-智能体育转播 运动数据分析 自动化视频剪辑 裁判辅助系统 青训技术分析 虚拟现实体验
数据分析·自动化·音视频
数字冰雹4 小时前
从“东数西算”到智慧机房:数字孪生如何重塑数据中心的“智能大脑”?
大数据·人工智能·数据可视化
种花的人_4 小时前
dDate日期维度表
数据可视化
招风的黑耳7 小时前
移动端数据可视化高保真原型模板:开启Axure高效设计新征程
axure·数据可视化·移动端
CodeCraft Studio7 小时前
Stimulsoft报表与仪表板产品重磅发布2026.1版本:进一步强化跨平台、数据可视化、合规及 AI 辅助设计等
人工智能·信息可视化·报表开发·数据可视化·stimulsoft·仪表板·报表工具
顽强卖力8 小时前
第一章:什么是数据分析?
数据挖掘·数据分析
奥利文儿9 小时前
【虚拟机】win11+VMware+ubuntu24 网络配置篇
网络·数据挖掘·数据分析
程序员老赵9 小时前
Nextcloud Docker 容器化部署指南
docker·数据分析·数据可视化
杨超越luckly12 小时前
ArcGIS应用指南:使用ArcScene制作三维热力图
arcgis·数据可视化·shp·arcscene·三维热力图
Aloudata12 小时前
根据业务角色创建 AI 数据分析助手,满足集团型企业多部门个性化需求
人工智能·数据挖掘·数据分析·chatbi·data agent