pytorch的CrossEntropyLoss交叉熵损失函数默认reduction是平均值

pytorch中使用nn.CrossEntropyLoss()创建出来的交叉熵损失函数计算损失默认是求平均值的,即多个样本输入后获取的是一个均值标量,而不是样本大小的向量。

复制代码
net = nn.Linear(4, 2)
loss = nn.CrossEntropyLoss()
X = torch.rand(10, 4)
y = torch.ones(10, dtype=torch.long)
y_hat = net(X)
l = loss(y_hat, y)
print(l)

打印的结果:tensor(0.7075, grad_fn=<NllLossBackward0>)

以上是对10个样本做的均值的标量

复制代码
net = nn.Linear(4, 2)
loss = nn.CrossEntropyLoss(reduction='none')
X = torch.rand(10, 4)
y = torch.ones(10, dtype=torch.long)
y_hat = net(X)
l = loss(y_hat, y)
print(l)

在构造CrossEntropyLoss时候加入 reduction='none',就把默认求平均取消掉了

打印结果:

复制代码
tensor([0.6459, 0.7372, 0.6373, 0.6843, 0.6251, 0.6555, 0.5510, 0.7016, 0.6975,
        0.6849], grad_fn=<NllLossBackward0>)

以上是10个样本各自的loss值

上图是pytorch的CrossEntropyLoss的构造方法,默认是 reduction='mean'

此外,使用反向传播计算梯度也会发生变化,loss值调用backward()要求loss值是一个tensor标量,如果是reduction='none',loss值得到的是tensor向量,会报错。 loss值需要求和或者求平均得到标量再进行backward()的计算

复制代码
l = loss(y_hat, y)
l.sum().backward()

至于为什么求和或者求平均都可以,首先要看下更新梯度的计算公式

求和学习率就调整的大一点,求均值的话学习率就可以小一点,总之就是除以样本数这个操作可以放到调整学习率中

相关推荐
我送炭你添花29 分钟前
Pelco KBD300A 模拟器:03.Pelco-P 协议 8 字节完整拆解 + 与 Pelco-D 一一对应终极对照表
python·测试工具·运维开发
It's now31 分钟前
Spring AI 基础开发流程
java·人工智能·后端·spring
Glad_R38 分钟前
巧用AI流程图,让信息呈现更全面
人工智能·信息可视化·产品运营·流程图·产品经理
R.lin1 小时前
Java 8日期时间API完全指南
java·开发语言·python
西南胶带の池上桜1 小时前
1.Pytorch模型应用(线性与非线性预测)
人工智能·pytorch·python
杀生丸学AI1 小时前
【无标题】VGGT4D:用于4D场景重建的视觉Transformer运动线索挖掘
人工智能·深度学习·3d·aigc·transformer·三维重建·视觉大模型
小和尚同志2 小时前
还在手动配置?这款开源软件让你一键配置 Claude Code 和 Codex
人工智能·aigc
阿正的梦工坊2 小时前
ProRL:延长强化学习训练,扩展大语言模型推理边界——NeurIPS 2025论文解读
人工智能·语言模型·自然语言处理
致Great2 小时前
Ollama 进阶指南
人工智能·gpt·chatgpt·agent·智能体