pytorch的CrossEntropyLoss交叉熵损失函数默认reduction是平均值

pytorch中使用nn.CrossEntropyLoss()创建出来的交叉熵损失函数计算损失默认是求平均值的,即多个样本输入后获取的是一个均值标量,而不是样本大小的向量。

复制代码
net = nn.Linear(4, 2)
loss = nn.CrossEntropyLoss()
X = torch.rand(10, 4)
y = torch.ones(10, dtype=torch.long)
y_hat = net(X)
l = loss(y_hat, y)
print(l)

打印的结果:tensor(0.7075, grad_fn=<NllLossBackward0>)

以上是对10个样本做的均值的标量

复制代码
net = nn.Linear(4, 2)
loss = nn.CrossEntropyLoss(reduction='none')
X = torch.rand(10, 4)
y = torch.ones(10, dtype=torch.long)
y_hat = net(X)
l = loss(y_hat, y)
print(l)

在构造CrossEntropyLoss时候加入 reduction='none',就把默认求平均取消掉了

打印结果:

复制代码
tensor([0.6459, 0.7372, 0.6373, 0.6843, 0.6251, 0.6555, 0.5510, 0.7016, 0.6975,
        0.6849], grad_fn=<NllLossBackward0>)

以上是10个样本各自的loss值

上图是pytorch的CrossEntropyLoss的构造方法,默认是 reduction='mean'

此外,使用反向传播计算梯度也会发生变化,loss值调用backward()要求loss值是一个tensor标量,如果是reduction='none',loss值得到的是tensor向量,会报错。 loss值需要求和或者求平均得到标量再进行backward()的计算

复制代码
l = loss(y_hat, y)
l.sum().backward()

至于为什么求和或者求平均都可以,首先要看下更新梯度的计算公式

求和学习率就调整的大一点,求均值的话学习率就可以小一点,总之就是除以样本数这个操作可以放到调整学习率中

相关推荐
大叔_爱编程几秒前
p024基于Django的网上购物系统的设计与实现
python·django·vue·毕业设计·源码·课程设计·网上购物系统
一个天蝎座 白勺 程序猿9 分钟前
Python爬虫(29)Python爬虫高阶:动态页面处理与云原生部署全链路实践(Selenium、Scrapy、K8s)
redis·爬虫·python·selenium·scrapy·云原生·k8s
90后小陈老师9 分钟前
WebXR教学 09 项目7 使用python从0搭建一个简易个人博客
开发语言·python·web
weixin-WNXZ021822 分钟前
闲上淘 自动上货工具运行原理解析
爬虫·python·自动化·软件工程·软件需求
正在走向自律37 分钟前
Conda 完全指南:从环境管理到工具集成
开发语言·python·conda·numpy·fastapi·pip·开发工具
东临碣石821 小时前
【AI论文】EnerVerse-AC:用行动条件来构想具身环境
人工智能
lqjun08271 小时前
PyTorch实现CrossEntropyLoss示例
人工智能·pytorch·python
心灵彼岸-诗和远方1 小时前
芯片生态链深度解析(三):芯片设计篇——数字文明的造物主战争
人工智能·制造
DpHard1 小时前
Vscode 配置python调试环境
ide·vscode·python
小蜗笔记1 小时前
显卡、Cuda和pytorch兼容问题
人工智能·pytorch·python