pytorch的CrossEntropyLoss交叉熵损失函数默认reduction是平均值

pytorch中使用nn.CrossEntropyLoss()创建出来的交叉熵损失函数计算损失默认是求平均值的,即多个样本输入后获取的是一个均值标量,而不是样本大小的向量。

复制代码
net = nn.Linear(4, 2)
loss = nn.CrossEntropyLoss()
X = torch.rand(10, 4)
y = torch.ones(10, dtype=torch.long)
y_hat = net(X)
l = loss(y_hat, y)
print(l)

打印的结果:tensor(0.7075, grad_fn=<NllLossBackward0>)

以上是对10个样本做的均值的标量

复制代码
net = nn.Linear(4, 2)
loss = nn.CrossEntropyLoss(reduction='none')
X = torch.rand(10, 4)
y = torch.ones(10, dtype=torch.long)
y_hat = net(X)
l = loss(y_hat, y)
print(l)

在构造CrossEntropyLoss时候加入 reduction='none',就把默认求平均取消掉了

打印结果:

复制代码
tensor([0.6459, 0.7372, 0.6373, 0.6843, 0.6251, 0.6555, 0.5510, 0.7016, 0.6975,
        0.6849], grad_fn=<NllLossBackward0>)

以上是10个样本各自的loss值

上图是pytorch的CrossEntropyLoss的构造方法,默认是 reduction='mean'

此外,使用反向传播计算梯度也会发生变化,loss值调用backward()要求loss值是一个tensor标量,如果是reduction='none',loss值得到的是tensor向量,会报错。 loss值需要求和或者求平均得到标量再进行backward()的计算

复制代码
l = loss(y_hat, y)
l.sum().backward()

至于为什么求和或者求平均都可以,首先要看下更新梯度的计算公式

求和学习率就调整的大一点,求均值的话学习率就可以小一点,总之就是除以样本数这个操作可以放到调整学习率中

相关推荐
CoovallyAIHub7 分钟前
何必先OCR再LLM?视觉语言模型直接读图,让百页长文档信息不丢失
深度学习·算法·计算机视觉
CoovallyAIHub24 分钟前
NAN-DETR:集中式噪声机制如何让检测更“团结”?
深度学习·算法·计算机视觉
leafff12324 分钟前
深度拆解 Claude 的 Agent 架构:MCP + PTC、Skills 与 Subagents 的三维协同
人工智能·架构
老蒋新思维27 分钟前
创客匠人深度洞察:创始人 IP 打造的非线性增长模型 —— 知识变现的下一个十年红利
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
CoovallyAIHub29 分钟前
火箭工程大学多模态遥感检测新框架MROD-YOLO:如何将小目标检测精度提升至77.9%?
深度学习·算法·计算机视觉
北京耐用通信33 分钟前
协议转换的‘魔法转换器’!耐达讯自动化Ethernet/IP转Devicenet如何让工业机器人‘听懂’不同咒语?”
网络·人工智能·科技·网络协议·机器人·自动化·信息与通信
CoovallyAIHub33 分钟前
未来物体检测趋势:需要关注的 7 个关键问题
深度学习·算法·计算机视觉
计算机学姐35 分钟前
基于Python的商场停车管理系统【2026最新】
开发语言·vue.js·后端·python·mysql·django·flask
ujainu36 分钟前
Flutter + HarmonyOS开发:轻松实现ArkTS页面跳转
人工智能·python·flutter
小猪快跑爱摄影36 分钟前
【AutoCad 2025】【Python】零基础教程(一)——简单示例
开发语言·python