pytorch中torch.einsum函数的详细计算过程图解

第一次见到 rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)这行代码时,属实是懵了,网上找了很多博主的介绍,但都没有详细的说明函数内部的计算过程,看得我是一头雾水,只知道计算结果的维度是如何变化的,却不明白函数内部是如何计算的。话不多说,直接上示例代码

示例代码

python 复制代码
import torch
r_q = torch.tensor([[[[1, 2, 3, 4, 5],
                      [6, 7, 8, 9, 10],
                      [11, 12, 13, 14, 15],
                      [16, 17, 18, 19, 20]],
                     [[21, 22, 23, 24, 25],
                      [26, 27, 28, 29, 30],
                      [31, 32, 33, 34, 35],
                      [36, 37, 38, 39, 40]],
                     [[41, 42, 43, 44, 45],
                      [46, 47, 48, 49, 50],
                      [51, 52, 53, 54, 55],
                      [56, 57, 58, 59, 60]]]])

Rh = torch.tensor([[[1, 2, 3, 4, 5,],
                      [7, 8, 9, 10, 11, ],
                      [13, 14, 15, 16, 17, ],
                      [19, 20, 21, 22, 23, ],
                        [1, 2, 3, 4, 5,],
                    [1, 2, 3, 4, 5,],],
                     [[25, 26, 27, 28, 29, ],
                      [31, 32, 33, 34, 35, ],
                      [37, 38, 39, 40, 41, ],
                      [43, 44, 45, 46, 47, ],
                      [1, 2, 3, 4, 5,],
                      [1, 2, 3, 4, 5,],],
                     [[49, 50, 51, 52, 53, ],
                      [55, 56, 57, 58, 59, ],
                      [61, 62, 63, 64, 65, ],
                      [67, 68, 69, 70, 71, ],
                      [1, 2, 3, 4, 5,],
                      [1, 2, 3, 4, 5,],]])

rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
print(rel_h)

输出结果:

结果解释

文字很难解释清楚,直接上图。r_q的维度为(1, 3, 4, 5), Rh的维度为(3, 6, 5),函数torch.einsum("bhwc,hkc->bhwk", r_q, Rh)中b=1, h=3, w=4, c=5。所以最终结果Rel_h的维度为bhwk,即(1, 3, 4, 5)。具体计算过程如下图。

这回看懂了吧。还不理解的或者讲的不对的地方,欢迎在评论区留言。创作不易,喜欢的话点个关注吧

相关推荐
随心点儿1 分钟前
使用python 将多个docx文件合并为一个word
开发语言·python·多个word合并为一个
zstar-_4 分钟前
【算法笔记】6.LeetCode-Hot100-链表专项
笔记·算法·leetcode
不学无术の码农5 分钟前
《Effective Python》第十三章 测试与调试——使用 Mock 测试具有复杂依赖的代码
开发语言·python
Swift社区10 分钟前
Swift 图论实战:DFS 算法解锁 LeetCode 323 连通分量个数
算法·swift·图论
sleepybear111311 分钟前
在Ubuntu上从零开始编译并运行Home Assistant源码并集成HACS与小米开源的Ha Xiaomi Home
python·智能家居·小米·home assistant·米家·ha xiaomi home
<但凡.13 分钟前
数据结构与算法之美:广义表
数据结构·c++·算法
纪伊路上盛名在16 分钟前
(鱼书)深度学习入门1:python入门
人工智能·python·深度学习
Shuai@20 分钟前
VILA-M3: Enhancing Vision-Language Models with Medical Expert Knowledge
人工智能·语言模型·自然语言处理
动亦定22 分钟前
AI与物联网(IoT)的融合
人工智能·物联网
前端极客探险家24 分钟前
告别卡顿与慢响应!现代 Web 应用性能优化:从前端渲染到后端算法的全面提速指南
前端·算法·性能优化