pytorch中torch.einsum函数的详细计算过程图解

第一次见到 rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)这行代码时,属实是懵了,网上找了很多博主的介绍,但都没有详细的说明函数内部的计算过程,看得我是一头雾水,只知道计算结果的维度是如何变化的,却不明白函数内部是如何计算的。话不多说,直接上示例代码

示例代码

python 复制代码
import torch
r_q = torch.tensor([[[[1, 2, 3, 4, 5],
                      [6, 7, 8, 9, 10],
                      [11, 12, 13, 14, 15],
                      [16, 17, 18, 19, 20]],
                     [[21, 22, 23, 24, 25],
                      [26, 27, 28, 29, 30],
                      [31, 32, 33, 34, 35],
                      [36, 37, 38, 39, 40]],
                     [[41, 42, 43, 44, 45],
                      [46, 47, 48, 49, 50],
                      [51, 52, 53, 54, 55],
                      [56, 57, 58, 59, 60]]]])

Rh = torch.tensor([[[1, 2, 3, 4, 5,],
                      [7, 8, 9, 10, 11, ],
                      [13, 14, 15, 16, 17, ],
                      [19, 20, 21, 22, 23, ],
                        [1, 2, 3, 4, 5,],
                    [1, 2, 3, 4, 5,],],
                     [[25, 26, 27, 28, 29, ],
                      [31, 32, 33, 34, 35, ],
                      [37, 38, 39, 40, 41, ],
                      [43, 44, 45, 46, 47, ],
                      [1, 2, 3, 4, 5,],
                      [1, 2, 3, 4, 5,],],
                     [[49, 50, 51, 52, 53, ],
                      [55, 56, 57, 58, 59, ],
                      [61, 62, 63, 64, 65, ],
                      [67, 68, 69, 70, 71, ],
                      [1, 2, 3, 4, 5,],
                      [1, 2, 3, 4, 5,],]])

rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
print(rel_h)

输出结果:

结果解释

文字很难解释清楚,直接上图。r_q的维度为(1, 3, 4, 5), Rh的维度为(3, 6, 5),函数torch.einsum("bhwc,hkc->bhwk", r_q, Rh)中b=1, h=3, w=4, c=5。所以最终结果Rel_h的维度为bhwk,即(1, 3, 4, 5)。具体计算过程如下图。

这回看懂了吧。还不理解的或者讲的不对的地方,欢迎在评论区留言。创作不易,喜欢的话点个关注吧

相关推荐
夫唯不争,故无尤也12 分钟前
Python广播机制:张量的影分身术
开发语言·python
静Yu13 分钟前
基于CANN框架的算子开发:释放AI计算潜能的核心引擎
人工智能
嵌入式-老费16 分钟前
自己动手写深度学习框架(最终的ncnn部署和测试)
人工智能·深度学习
Andy16 分钟前
回文子串数目--动态规划算法
算法·动态规划
sin_hielo19 分钟前
leetcode 1930
算法·leetcode
塞北山巅22 分钟前
相机自动曝光(AE)核心算法——从参数调节到亮度标定
数码相机·算法
聆风吟º23 分钟前
【数据结构入门手札】算法核心概念与复杂度入门
数据结构·算法·复杂度·算法的特性·算法设计要求·事后统计方法·事前分析估算方法
流浪猪头拯救地球29 分钟前
利用 Python 解密 / 加密 PDF 文件
python·pdf·php
阿十六34 分钟前
OUC AI Lab 第七章:ViT & Swin Transformer
人工智能·深度学习·transformer
Mintopia39 分钟前
🌳 Claude `code/worktree` 命令最佳实践指南
人工智能·claude·trae