pytorch中torch.einsum函数的详细计算过程图解

第一次见到 rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)这行代码时,属实是懵了,网上找了很多博主的介绍,但都没有详细的说明函数内部的计算过程,看得我是一头雾水,只知道计算结果的维度是如何变化的,却不明白函数内部是如何计算的。话不多说,直接上示例代码

示例代码

python 复制代码
import torch
r_q = torch.tensor([[[[1, 2, 3, 4, 5],
                      [6, 7, 8, 9, 10],
                      [11, 12, 13, 14, 15],
                      [16, 17, 18, 19, 20]],
                     [[21, 22, 23, 24, 25],
                      [26, 27, 28, 29, 30],
                      [31, 32, 33, 34, 35],
                      [36, 37, 38, 39, 40]],
                     [[41, 42, 43, 44, 45],
                      [46, 47, 48, 49, 50],
                      [51, 52, 53, 54, 55],
                      [56, 57, 58, 59, 60]]]])

Rh = torch.tensor([[[1, 2, 3, 4, 5,],
                      [7, 8, 9, 10, 11, ],
                      [13, 14, 15, 16, 17, ],
                      [19, 20, 21, 22, 23, ],
                        [1, 2, 3, 4, 5,],
                    [1, 2, 3, 4, 5,],],
                     [[25, 26, 27, 28, 29, ],
                      [31, 32, 33, 34, 35, ],
                      [37, 38, 39, 40, 41, ],
                      [43, 44, 45, 46, 47, ],
                      [1, 2, 3, 4, 5,],
                      [1, 2, 3, 4, 5,],],
                     [[49, 50, 51, 52, 53, ],
                      [55, 56, 57, 58, 59, ],
                      [61, 62, 63, 64, 65, ],
                      [67, 68, 69, 70, 71, ],
                      [1, 2, 3, 4, 5,],
                      [1, 2, 3, 4, 5,],]])

rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
print(rel_h)

输出结果:

结果解释

文字很难解释清楚,直接上图。r_q的维度为(1, 3, 4, 5), Rh的维度为(3, 6, 5),函数torch.einsum("bhwc,hkc->bhwk", r_q, Rh)中b=1, h=3, w=4, c=5。所以最终结果Rel_h的维度为bhwk,即(1, 3, 4, 5)。具体计算过程如下图。

这回看懂了吧。还不理解的或者讲的不对的地方,欢迎在评论区留言。创作不易,喜欢的话点个关注吧

相关推荐
凉拌三丝几秒前
Llama Index案例实战(三)状态的设置与读取
人工智能·ai 编程
YoseZang4 分钟前
【机器学习和深度学习】分类问题通用评价指标:精确率、召回率、准确率和混淆矩阵
深度学习·机器学习·分类算法
微臣愚钝4 分钟前
《Generative Adversarial Nets》-GAN:生成对抗网络,一场伪造者与鉴定师的终极博弈
人工智能·深度学习
2301_807449206 分钟前
字符串相乘——力扣
java·算法·leetcode
木卯9 分钟前
5种创建型设计模式笔记(Python实现)
python·设计模式
IT古董9 分钟前
【漫话机器学习系列】128.预处理之训练集与测试集(Preprocessing Traning And Test Sets)
深度学习·机器学习·自然语言处理
掘金酱12 分钟前
👏 用idea传递无限可能!AI FOR CODE挑战赛「创意赛道」作品提交指南
前端·人工智能·trae
招风的黑耳20 分钟前
智慧城市智慧社区项目建设方案
人工智能·智慧城市
JokerSZ.21 分钟前
复现:latent diffusion(LDM)stable diffusion
人工智能·深度学习·stable diffusion·生成模型
T0uken24 分钟前
【深度学习】Pytorch:更换激活函数
人工智能·pytorch·深度学习