MapTR论文笔记

MAPTR: STRUCTURED MODELING AND LEARNING FOR ONLINE VECTORIZED HD MAP CONSTRUCTION

目的

传统高精地图 通过一些离线的基于 SLAM 的方法生成,需要复杂的流程以及高昂的维护费用。基于 bev 分割的建图方法,缺少向量化 实例级的信息,比如说lane结构。为了获得向量化的 HD map,HDMapNet 将像素级的分割结果分组,需要复杂且耗时的后处理。VectorMapNet 将地图的元素表示成点序列,采用了层级式 coarse-to-fine 网络,并且利用了自回归的 decoder 预测 序列化的点集,需要较长的推理时间。

当前在线向量化的在线高清地图的构建方法的效率较低,无法应用到实时的场景。DETR 采用了简单的 encoder-decoder transformer 结构,实现了端到端的目标检测。本文的目的是设计一个 类似于 DETR 结构,高效的端到端的 高清地图的构建方法。

本文的主要贡献主要有两点:

  1. 对于地图元素的统一表示
  2. 针对这种统一表示给出了 一个端到端学习的网络结构

方法

地图元素表示

地图的元素可表示成 折线 和 多边形 两种类别。这两种都可以用 点集 表示。然而点集的排列方式不是唯一的,存在多种排列方式。比如说 折线,它的起点和终点是可以互换的,代表两种方向,对于一些方向不敏感的元素,比如说人行道或者 车道线,两种方向都是可以的。如下图所示:

如果让网络只学习某一种排列方式,是不合理的。因此本文对于每一个地图元素都给出了所有的排列组合方式,用于后续网络的训练。

对于折线,根据起点位置的不同,有两种排列方式。对于多边形,需要考虑两个因素: 起点的位置 以及 连接的顺序(顺时针 或 逆时针),这样可以产生多种排列方式。

匹配方法

和 DETR 一样,MapTR 同时预测 N 个地图元素,N 是一个较大的数字,比一般场景中地图元素的数量要大。

MapTR 中需要使用两种匹配方法以实现 网络预测的元素 和 gt 某个元素的某一个具体的排列方式的匹配。本文的匹配方法有两个层级:Instance-level Matching 以及 Point-level Matching。

Instance-level Matching

在训练时,我们需要把 网络预测的元素 和 gt 匹配起来,这里也是使用的匈牙利匹配算法。

预测元素 和 gt 的 cost 考虑两部分:

元素的类别 以及 位置。类别使用的是 Focal loss,位置的loss使用的是 关于点位置的距离函数。

Point-level Matching

在 实例级的匹配之后,我们已经拿到了 预测元素 和 gt 的匹配关系,然后我们还需要做 点级的 匹配。

预测的点集 会和 gt 排列组合 中 每一个 排列方法 计算 距离,选择距离最小的一个配对。这里使用的是曼哈顿距离。

训练的 loss

  • 分类 loss focal loss
  • point2point loss,曼哈顿距离
  • edge direction loss,point2point loss 只考虑了点,并没有考虑 和折线 和 多边形的 边。edge direction loss 加入了对 边方向的 监督。这里使用的是余弦相似度。
    边可以用向量来表示(空间中两个点的坐标相减)

网络结构

MapTR 结构还是比较直接的 使用的是 bev + transformer decoder 结构

相关资料

https://www.bilibili.com/video/BV1uh4y1X7Ah/?spm_id_from=333.337.search-card.all.click

相关推荐
有Li15 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
张较瘦_19 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
selia107821 小时前
[论文阅读] Neural Architecture Search: Insights from 1000 Papers
论文阅读
寻丶幽风1 天前
论文阅读笔记——NoPoSplat
论文阅读·笔记·三维重建·3dgs·相机位姿·dustr
寻丶幽风1 天前
论文阅读笔记——VGGT: Visual Geometry Grounded Transformer
论文阅读·笔记·transformer·三维重建·3dgs·vggt
张较瘦_1 天前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建
论文阅读·人工智能·软件工程
非英杰不图1 天前
论文阅读:Align and Prompt (ALPRO 2021.12)
论文阅读·prompt
qq_416276421 天前
当SAM遇到声纳图像时之论文阅读
论文阅读
王上上1 天前
【论文阅读38】-结合应力预测位移
论文阅读
张较瘦_12 天前
[论文阅读] 软件工程 + 教学 | 软件工程项目管理课程改革:从传统教学到以学生为中心的混合式学习实践
论文阅读·学习·软件工程