循环神经网络(RNN)

目录

1.序列模型的应用

2.循环神经网络(Recurrent Neural Network, RNN)

RNN的输入序列和输出序列的长度不一定一致。RNN也有不同的架构。

3.使用RNN构建一个语言模型(language model)

对于一个语言识别任务,对于一个输入的文本序列,语言模型能够给出对应的概率。

如何训练这样一个语言模型?

训练集:一个大的文本语料库(text corpus)。

例如,对于这样一个句子:Cats average 15 hours of sleep a day. 模型这样训练:

损失函数

为了解决RNN的梯度消失(vanishing gradient)问题,可以使用GRU(Gate Recurrent Unit门控循环单元) 或者LSTM(long short term memory units 长短期记忆网络)

4.双向RNN(bidirectional RNN)

该模型可以让你在序列的某点处,不仅可以获取之前的信息,还可以获取未来的信息。
**例如,**在"He said, Teddy Roosevelt was a great predient!"这段文本中,判断 "Teddy" 是不是人名,不仅要考虑之前的信息,还要考虑之后的信息。

5.深层RNN

当网络需要学习更为复杂的函数时,可以把RNN进行堆叠,构建更深的模型。

相关推荐
喝拿铁写前端6 小时前
别再让 AI 直接写页面了:一种更稳的中后台开发方式
前端·人工智能
tongxianchao7 小时前
UPDP: A Unified Progressive Depth Pruner for CNN and Vision Transformer
人工智能·cnn·transformer
塔能物联运维7 小时前
设备边缘计算任务调度卡顿 后来动态分配CPU/GPU资源
人工智能·边缘计算
过期的秋刀鱼!7 小时前
人工智能-深度学习-线性回归
人工智能·深度学习
木头左7 小时前
高级LSTM架构在量化交易中的特殊入参要求与实现
人工智能·rnn·lstm
IE068 小时前
深度学习系列84:使用kokoros生成tts语音
人工智能·深度学习
欧阳天羲8 小时前
#前端开发未来3年(2026-2028)核心趋势与AI应用实践
人工智能·前端框架
IE068 小时前
深度学习系列83:使用outetts
人工智能·深度学习
水中加点糖8 小时前
源码运行RagFlow并实现AI搜索(文搜文档、文搜图、视频理解)与自定义智能体(一)
人工智能·二次开发·ai搜索·文档解析·ai知识库·ragflow·mineru
imbackneverdie8 小时前
如何用AI工具,把文献综述从“耗时费力”变成“高效产出”?
人工智能·经验分享·考研·自然语言处理·aigc·ai写作