【深度学习Week4】MobileNet_ShuffleNet

报错:unsafe legacy renegotiation disabled


解决方案:

尝试了更换cryptography==36.0.2版本 ,以及更换下载链接 的方法,都不行,最后采用了手动下载mat文件并上传到colab的方法

高光谱图像分类数据集简介Indian Pines&mat

定义网络:

python 复制代码
class HybridSN(nn.Module):
  def __init__(self):
    super(HybridSN, self).__init__()
    self.conv3d_1 = nn.Sequential(
        nn.Conv3d(1, 8, kernel_size=(7, 3, 3), stride=1, padding=0),
        nn.BatchNorm3d(8),
        nn.ReLU(inplace = True),
    )
    self.conv3d_2 = nn.Sequential(
        nn.Conv3d(8, 16, kernel_size=(5, 3, 3), stride=1, padding=0),
        nn.BatchNorm3d(16),
        nn.ReLU(inplace = True),
    ) 
    self.conv3d_3 = nn.Sequential(
        nn.Conv3d(16, 32, kernel_size=(3, 3, 3), stride=1, padding=0),
        nn.BatchNorm3d(32),
        nn.ReLU(inplace = True)
    )

    self.conv2d_4 = nn.Sequential(
        nn.Conv2d(576, 64, kernel_size=(3, 3), stride=1, padding=0),
        nn.BatchNorm2d(64),
        nn.ReLU(inplace = True),
    )
    self.fc1 = nn.Linear(18496,256)
    self.fc2 = nn.Linear(256,128)
    self.fc3 = nn.Linear(128,16)
    self.dropout = nn.Dropout(p = 0.4)

  def forward(self,x):
    out = self.conv3d_1(x)
    out = self.conv3d_2(out)
    out = self.conv3d_3(out)
    out = self.conv2d_4(out.reshape(out.shape[0],-1,19,19))
    out = out.reshape(out.shape[0],-1)
    out = F.relu(self.dropout(self.fc1(out)))
    out = F.relu(self.dropout(self.fc2(out)))
    out = self.fc3(out)
    return out

实验结果:

本次准确率为97.89%

思考题

● 训练HybridSN,然后多测试几次,会发现每次分类的结果都不一样,请思考为什么?

每次训练的时候,神经网络的参数和权重都是随机的,所以每次的结果都不一样。

● 如果想要进一步提升高光谱图像的分类性能,可以如何改进?

增加注意力机制,把Attention加在第三个三维卷积后,以保留更多的光谱信息,从而进一步提升高光谱图像的分类性能。

● depth-wise conv 和 分组卷积有什么区别与联系?

Depth-wise conv(深度可分离卷积)和分组卷积是两种用于减少卷积计算量的优化技术。区别在于:

  • Depth-wise conv是在每个输入通道上独立地进行卷积操作,然后再将结果在通道维度上进行组合。这样可以减少参数数量和计算量,但每个通道之间没有交互信息。
  • 分组卷积是将输入通道分为若干组,然后在每组内进行卷积操作。这样可以在一定程度上减少计算量,并且每组内的通道可以相互交互信息。但相比普通卷积,分组卷积可能引入一定的信息损失。

● SENet 的注意力是不是可以加在空间位置上?

SENet的注意力机制主要是通过学习通道之间的关系来提升特征的重要性,但也可以通过适当的调整将注意力扩展到空间位置上,从而使网络能够关注不同空间位置上的特征,进一步提升性能。

● 在 ShuffleNet 中,通道的 shuffle 如何用代码实现?

python 复制代码
import torch

def channel_shuffle(x, groups):
    batch_size, height, width, channels = x.size()
    channels_per_group = channels // groups
    
    # Reshape the tensor to (batch_size, height, width, groups, channels_per_group)
    x = x.view(batch_size, height, width, groups, channels_per_group)
    
    # Transpose the tensor along the last two dimensions (swap channels_per_group and groups)
    x = x.permute(0, 1, 2, 4, 3)
    
    # Reshape the tensor back to its original shape
    x = x.view(batch_size, height, width, channels)
    
    return x
相关推荐
乐迪信息4 分钟前
乐迪信息:船体AI烟火检测,24小时火灾自动预警
人工智能·物联网·算法·目标检测·语音识别
且去填词6 分钟前
DeepSeek :基于 AST 与 AI 的遗留系统“手术刀”式治理方案
人工智能·自动化·llm·ast·agent·策略模式·deepseek
adaAS14143157 分钟前
【深度学习】YOLOv8-SOEP-RFPN-MFM实现太阳能电池板缺陷检测与分类_1
深度学习·yolo·分类
llilian_169 分钟前
相位差测量仪 高精度相位计相位差测量仪的应用 相位计
大数据·人工智能·功能测试·单片机
云雾J视界9 分钟前
从Boost的设计哲学到工业实践:解锁下一代AI中间件架构的密码
c++·人工智能·中间件·架构·stackoverflow·boost
Coding茶水间10 分钟前
基于深度学习的驾驶行为检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
深度学习·qt·yolo
bing.shao17 分钟前
AI在电商上架图片领域的应用
开发语言·人工智能·golang
执笔论英雄18 分钟前
【RL】中Token级策略梯度损失
人工智能·pytorch·深度学习
百家方案20 分钟前
“十五五”智慧文旅解决方案:以科技为核心,开启沉浸体验与高效治理新篇章
大数据·人工智能·智慧文旅·智慧旅游
●VON20 分钟前
绿色 AI:让智能计算与地球共生
人工智能·学习·安全·制造·von