算法训练Day42|1049. 最后一块石头的重量 II ● 494. 目标和 ● 474.一和零

背包类别

01背包:有n种物品,每种物品只有一个.

完全背包:有n种物品,每种物品有无限个.

多重背包:有n种物品,每种物品个数各不相同.

区别:仅仅体现在物品个数上的不同而已。

确定dp[i][j]数组的含义:[0,i]的物品任取放容量为j的背包里.

LeetCode:1049. 最后一块石头的重量 II

1049. 最后一块石头的重量 II - 力扣(LeetCode)

1.思路

01背包问题,dp[n + 1]初始化大小之所以是 n + 1 ,在于 n 是一个最大容量,且数组下标从 0 开始。

遍历顺序:先遍历物品再遍历背包,后者背包倒序是为了将物品大值先放入背包,保证每个物品只能遍历一次。

递推公式:取决于物品大小和背包容量,如果背包容量 > 物品大小,则允许放入(此时背包状态:dp[j - stones[i]] + stones[i]),否则不允许放入(此时背包状态:dp[j]),选择两者之中的较大值即可。

2.代码实现

复制代码
 1// 一维似乎更好理解
 2class Solution {
 3    public int lastStoneWeightII(int[] stones) {
 4        int sum = 0;
 5        for (int num : stones) {
 6            sum += num;
 7        }
 8        int target = sum / 2;
 9        int[] dp = new int[target + 1];
10        for (int i = 0; i < stones.length; i++) {
11            for (int j = target; j >= stones[i]; j--) {
12                dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
13            }
14        }
15        return sum - 2 * dp[target];
16    } 
17}

3.复杂度分析

时间复杂度:O(n^2).

空间复杂度:O(n).

LeetCode: 494. 目标和

494. 目标和 - 力扣(LeetCode)

1.思路

本题可以抽象成01背包问题,中间需要计算一下...

遍历顺序依旧是:先物品再背包,保证物品先放入最大值及元素的唯一性.

分两种情况:sum<0时,取绝对值之后进入遍历.

2.代码实现

复制代码
 1class Solution {
 2    public int findTargetSumWays(int[] nums, int target) {
 3        int sum = 0;
 4        for (int num : nums) {
 5            sum += num;
 6        }
 7        if (target < 0 && sum < -target) return 0;
 8        if ((target + sum) % 2 != 0) return 0;
 9        int size = (target + sum) / 2;
10        if (size < 0) size = -size;
11
12        int[] dp = new int[size + 1];
13        dp[0] = 1;
14        for (int i = 0; i < nums.length; i++) {
15            for (int j = size; j >= nums[i]; j--) {
16                dp[j] += dp[j - nums[i]];
17            }
18        }
19        return dp[size];
20    }
21}

3.复杂度分析

时间复杂度:O(n^2).

空间复杂度:O(n).

LeetCode: 474.一和零

474. 一和零 - 力扣(LeetCode)

1.思路

拆解将m和n共同看作背包的整体,字符串中每个元素看成物品。沿用上述遍历顺序和dp[][]数组定义,输出即可.

2.代码实现

复制代码
 1class Solution {
 2    public int findMaxForm(String[] strs, int m, int n) {
 3        // dp[i][j] 表示i个0 和 j个1时的最大子集数
 4        int[][] dp = new int[m + 1][n + 1];
 5        int one;
 6        int zero;
 7        // 先遍历物品
 8        for (String str : strs) {
 9            one = 0;
10            zero = 0;
11            // 得出每个字符串元素中包含的0和1的个数
12            for (char ch : str.toCharArray()) {
13                if (ch == '0') {
14                    zero++;
15                } else {
16                    one++;
17                }
18            }
19            // 倒序遍历背包,保证每个字符串元素只会被用一次
20            for (int i = m; i >= zero; i--) {
21                for (int j = n; j >= one; j--) {
22                    dp[i][j] = Math.max(dp[i][j], dp[i - zero][j - one] + 1);
23                }
24            }
25        }
26        return dp[m][n];
27    }
28}

3.复杂度分析

时间复杂度:O(km n*). 空间复杂度:O(m*n).

相关推荐
wuqingshun3141592 小时前
蓝桥杯 3. 压缩字符串
数据结构·c++·算法·职场和发展·蓝桥杯
柯3492 小时前
JVM-类加载机制
java·开发语言·jvm
风雨无阻fywz2 小时前
java 类的实例化过程,其中的相关顺序 包括有继承的子类等复杂情况,静态成员变量的初始化顺序,这其中jvm在干什么
java·开发语言·jvm
沃野_juededa2 小时前
关于uniapp 中uview input组件设置为readonly 或者disabled input区域不可点击问题
java·前端·uni-app
杀神lwz5 小时前
数据结构和算法(八)--2-3查找树
数据结构
红烧柯基5 小时前
解决redis序列号和反序列化问题
java·数据库·redis
Tanecious.6 小时前
初阶数据结构--排序算法(全解析!!!)
数据结构·算法·排序算法
KAI_KD6 小时前
自定义JackSon配置
java
运维@小兵6 小时前
SpringBoot获取用户信息常见问题(密码屏蔽、驼峰命名和下划线命名的自动转换)
java·spring boot·后端
新时代苦力工7 小时前
Java实现使用EasyExcel按模板导出文件
java