Yolov5缺陷检测/目标检测 Jetson nx部署Triton server

复制代码
 使用AI目标检测进行缺陷检测时,部署到Jetson上即小巧算力还高,将训练好的模型转为tensorRT再部署到Jetson 上供http或GRPC调用。

1 Jetson nx 刷机

找个ubuntu 系统NVIDIA官网下载安装Jetson 的sdkmanager一步步刷机即可。

本文刷的是JetPack 5.1, 其中包含

CUDA 11.4

cuDNN 8.6.0

TensorRT 8.5.2.2

Python 3.8.10

Ubuntu 20.04

2 下载解压/安装/测试Triton Server

其实triton server 不用安装,直接下载解压开箱即用,要安装的是一堆依赖。

下载triton server 软件包,Release 2.35.0 corresponding to NGC container 23.06

找到下面tritonserver2.35.0-jetpack5.1.2.tgz下载到Jetson并解压到home。

根据jetson.md安装triton server 的依赖包,如果不在jetson上使用triton 客户端可以不装triton client 的依赖。

Triton server main分支下的docs文件夹下载后放到home/tritonserver2.35.0-jetpack5.1.2/tritonserver中,

$ cd docs/examples

$ ./fetch_models.sh

下载示例模型,cd 到home/tritonserver2.35.0-jetpack5.1.2/tritonserver/bin

$./tritonserver --model-repository=.../docs/examples/model_repository --backend-directory=.../backends

如果看到下图8001/8000/8002 说明示例打开成功,triton server 安装成功。

3 Train yolov5 model

使用ultralytics的yolov5 模型train 一个自己的model, 我选用的是yolov5l6,略微大一些, best.pt 153.1MB。

4 .pt 转ONNX 转TensorRT

个人认为只有使用TensorRT模型部署NVIDIA显卡才是推理速度最极致的体验。

Jetson 上官网下载一个Pycharm 软件压缩包,新建python环境。

安装yolov5的依赖,参考Deploy on NVIDIA Jetson using TensorRT and DeepStream SDK

安装到pytorch 和torchvision 即可,

再使用yolov5文件夹内export.py

修改615行 --weights default ROOT / 'best.py'

修改619行增加default=True使用半精度

修改638行default=['engine']

Terminal $python3 export.py 可以看到log是先生成best.onnx再生成best.engine

半小时后转化完毕。

5部署yolov5 到triton sever

在examples文件夹下新建自己的模型仓库文件夹zz_model_repository

新建模型文件夹yolov5l6再新建名称为1 的文件夹将best.engine copy进来改名为model.plan

在yolov5l6下新建文件config.pbtxt输入以下内容:

复制代码
name: "yolov5l6"
platform: "tensorrt_plan"
max_batch_size: 1
input [
    {
        name: 'images'
        data_type: TYPE_FP16
        format: FORMAT_NCHW
        dims: [3, 640, 640]
    }
]
output [
    {
        name: 'output0'
        data_type: TYPE_FP16
        dims: [25500, 8]
    }
]
backend: 'tensorrt'

同样cd 到home/tritonserver2.35.0-jetpack5.1.2/tritonserver/bin

$./tritonserver --model-repository=.../docs/examples/zz_model_repository --backend-directory=.../backends

出现下图说明模型加载成功。

6Triton client 调用模型

这一部分就是开发相机,图像前处理,调用模型,图像后处理部分了,略过。

相关推荐
云和数据.ChenGuang几秒前
tensorflow的广播机制
人工智能·python·tensorflow
J_Xiong01177 分钟前
【VLNs篇】11:Dynam3D: 动态分层3D令牌赋能视觉语言导航中的VLM
人工智能·算法·3d
极客BIM工作室10 分钟前
AI 图像生成技术发展时间脉络:从 GAN 到多模态大模型的知名模型概略解析
人工智能·神经网络·生成对抗网络
学术小白人27 分钟前
11月即将召开-IEEE-机械制造方向会议 |2025年智能制造、机器人与自动化国际学术会议 (IMRA 2025)
运维·人工智能·机器人·自动化·制造·rdlink研发家
碧海银沙音频科技研究院27 分钟前
i2s封装成自己定义8路音频数据发送方法
arm开发·人工智能·深度学习·算法·音视频
做科研的周师兄31 分钟前
【机器学习入门】9.2:感知机的工作原理 —— 从模型结构到实战分类
人工智能·算法·机器学习·分类·数据挖掘
微盛AI企微管家43 分钟前
企业微信的AI功能更新:智能总结、智能搜索、智能机器人、智能表格,更智能的一体化办公解决方案
大数据·人工智能·数据挖掘
金融Tech趋势派1 小时前
企业微信私域运营代运营:微盛AI・企微管家以四级分层服务助力企业私域落地与增长
大数据·人工智能·企业微信
AI企微观察1 小时前
企业微信如何正确营销获客?精准定位与场景触达的实践框架
大数据·人工智能
美狐美颜SDK开放平台1 小时前
美颜SDK跨平台适配实战解析:让AI美颜功能在iOS与Android都丝滑运行
android·人工智能·ios·美颜sdk·直播美颜sdk·第三方美颜sdk·美颜api