深度学习之用PyTorch实现逻辑回归

0.1 学习视频源于:b站:刘二大人《PyTorch深度学习实践》

0.2 本章内容为自主学习总结内容,若有错误欢迎指正!

代码(类比线性回归):

python 复制代码
# 调用库
import torch
import torch.nn.functional as F

# 数据准备
x_data = torch.Tensor([[1.0], [2.0], [3.0]])  # 训练集输入值
y_data = torch.Tensor([[0], [0], [1]])  # 训练集输出值

# 定义逻辑回归模型
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()  # 调用父类构造函数
        self.linear = torch.nn.Linear(1, 1)  # 实例化torch库nn模块的Linear类,特征一维,输出一维

    def forward(self, x):
        """
        前馈运算
        :param x: 输入值
        :return: 线性回归预测结果
        """
        y_pred = F.sigmoid(self.linear(x))
        return y_pred

model = LogisticRegressionModel()  # 实例化

criterion = torch.nn.BCELoss(size_average=False)  # 损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 优化器------梯度下降SGD

# 训练过程
for epoch in range(1000):  # epoch:训练轮次
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    optimizer.zero_grad()  # 梯度归零
    loss.backward()  # 反向传播
    optimizer.step()  # 权重自动更新

print("w = ", model.linear.weight.item())
print("b = ", model.linear.bias.item())

# 预测过程
x_test = torch.Tensor([[3.5]])
y_test = model(x_test)
print("y_pred = ", y_test.data)

结果:

注:输出结果为类别是1的概率。

相关推荐
聆风吟º5 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
User_芊芊君子5 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能6 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
人工不智能5776 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
h64648564h6 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
心疼你的一切6 小时前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
学电子她就能回来吗8 小时前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
Coder_Boy_9 小时前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j
大模型玩家七七9 小时前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习
kkzhang9 小时前
Concept Bottleneck Models-概念瓶颈模型用于可解释决策:进展、分类体系 与未来方向综述
深度学习