深度学习之用PyTorch实现逻辑回归

0.1 学习视频源于:b站:刘二大人《PyTorch深度学习实践》

0.2 本章内容为自主学习总结内容,若有错误欢迎指正!

代码(类比线性回归):

python 复制代码
# 调用库
import torch
import torch.nn.functional as F

# 数据准备
x_data = torch.Tensor([[1.0], [2.0], [3.0]])  # 训练集输入值
y_data = torch.Tensor([[0], [0], [1]])  # 训练集输出值

# 定义逻辑回归模型
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()  # 调用父类构造函数
        self.linear = torch.nn.Linear(1, 1)  # 实例化torch库nn模块的Linear类,特征一维,输出一维

    def forward(self, x):
        """
        前馈运算
        :param x: 输入值
        :return: 线性回归预测结果
        """
        y_pred = F.sigmoid(self.linear(x))
        return y_pred

model = LogisticRegressionModel()  # 实例化

criterion = torch.nn.BCELoss(size_average=False)  # 损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 优化器------梯度下降SGD

# 训练过程
for epoch in range(1000):  # epoch:训练轮次
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    optimizer.zero_grad()  # 梯度归零
    loss.backward()  # 反向传播
    optimizer.step()  # 权重自动更新

print("w = ", model.linear.weight.item())
print("b = ", model.linear.bias.item())

# 预测过程
x_test = torch.Tensor([[3.5]])
y_test = model(x_test)
print("y_pred = ", y_test.data)

结果:

注:输出结果为类别是1的概率。

相关推荐
乌旭1 小时前
量子纠错码实战:从Shor码到表面码
人工智能·深度学习·学习·机器学习·transformer·量子计算
乌旭1 小时前
量子计算入门:Qiskit实战量子门电路设计
人工智能·pytorch·python·深度学习·transformer·量子计算
hjs_deeplearning2 小时前
论文写作篇#8:双栏的格式里怎么插入横跨两栏的图片和表格
人工智能·深度学习·学习·yolo·机器学习·论文写作·论文排版
Helios@2 小时前
CNN 中感受野/权值共享是什么意思?
人工智能·深度学习·计算机视觉
冰蓝蓝2 小时前
TensorBoard
人工智能·深度学习
视觉AI3 小时前
研究下适合部署在jeston上的深度学习类单目标跟踪算法
深度学习·算法·目标跟踪
AndrewHZ3 小时前
【图像处理基石】什么是AWB?
图像处理·深度学习·isp算法·awb·ai awb·isp芯片
小西几哦12 小时前
3D点云配准RPM-Net模型解读(附论文+源码)
人工智能·pytorch·3d
Listennnn14 小时前
神经网络能不能完全拟合y=x² ???
人工智能·深度学习·神经网络
WhyNot?15 小时前
深度学习入门(三):神经网络的学习
深度学习·神经网络·学习