C++数据结构之平衡二叉搜索树(一)——AVL的实现(zig与zag/左右双旋/3+4重构)

本文目录

00.BBST------平衡二叉搜索树

本文是介绍众多平衡二叉搜索树(BBST)的第一篇------介绍AVL树。故先来引入BBST的概念。由于上一篇介绍的二叉搜索树(BST)在极度退化的情况下,十分不平衡,不平衡到只朝一侧偏,成为一条链表,复杂度可达 O ( n ) O(n) O(n),所以我们要在"平衡"方面做一些约束,以防我们的树结构退化得那么严重。

具体来说,含 n n n个节点,高度为 h h h的BST,若满足 h = O ( l o g 2 n ) h=O(log_2 n) h=O(log2n),则称为称为平衡二叉搜索树。

01.AVL树

AVL树是一种BBST(稍后会证明)。它约束自己是否平衡,主要靠一个指标------平衡因子。定义:平衡因子=左子树高度-右子树高度。如果满足 − 2 < 全部平衡因子 < 2 -2<全部平衡因子<2 −2<全部平衡因子<2,则该AVL树处于平衡状态;否则,需要靠一系列措施,将其恢复平衡。

首先先证明AVL树满足BBST的要求,即 h = O ( l o g 2 n ) h=O(log_2 n) h=O(log2n)(下式)。我们可转而证明n=Ω(Φ^h^)(即,AVL的节点数不会太少)

[结论] 高度为 h h h的AVL Tree 至少有 f i b ( ( h + 3 ) − 1 fib((h+3)-1 fib((h+3)−1 个节点

[证明]


02.AVL的插入

插入一个节点会导致一串祖先的失衡,删除一个节点至多导致一个祖先失衡。但是,通过后续代码就可发现,删除节点比插入节点复杂的多。原因是,插入节点只要调整好了一处,这条路径上的所有祖先都可平衡,复杂度是O(1)。而删除节点是,调整好了一处平衡,另一处就会不平衡,自下而上层层调整,复杂度是O(n)

2.1单旋------zig 与 zag

zig 与 zag 分别对应右单旋和左单旋。单旋的操作改变的是两个节点的相对位置。改变的是三条线:一上一下一子树。新树根上行指向原根,新树根原子树给到原根。如下图,V到Y那去,Y到C那去。

2.2插入节点后的单旋实例

在下图处添加一个节点,自上而下更新高度(或平衡因子),g会率先进入不平衡状态。观察g,p,v呈一条线,而非"之"字,所以用单旋调整(之字形对应双旋)。具体来说,对g左单旋。

2.3手玩小样例

例题:将1,2,3,4,5,6依次插入空的AVL Tree,最终AVL Tree长成什么样?

[过程]首先正常插入1,2;插入3时,1是第一个发现不平衡的节点,zag(1),即对1进行左单旋,成功解决;正常插入4

插入5时,3是第一个发现不平衡的节点,zag(3),即对3进行左单旋,成功解决

插入6时,2是第一个发现不平衡的节点,zag(2),即对2进行左单旋,成功解决

2.4双旋实例

双旋的操作改变的是三个节点的相对位置。分为两种情况------zig-zag与zag-zig。

在下图处添加一个节点,自上而下更新高度(或平衡因子),g会率先进入不平衡状态。观察g,p,v呈"之"字,所以用双旋。具体来说,先zig§,再zag(g).

2.5小结

AVL树中插入 节点引发失衡,经旋转调整后重新平衡,此时包含节点g,p,v的子树高度是不变的 ,子树高度复原,更高祖先也必平衡,全树复衡。故在AVL树中修正插入节点引发的失衡不会出现失衡传播。

03.AVL的删除

删除一个节点至多导致一个祖先失衡。

3.1单旋删除

3.2双旋删除

3.3小结

AVL树中删除 节点引发失衡,经旋转调整后重新平衡,此时包含节点g,p,v的子树高度有可能不变也有可能减小1 ,故在AVL树中修正删除节点引发的失衡有可能出现失衡传播。

04.3+4重构

通过观察以上插入和删除的结果示意图,发现结构是一样的------三个节点按顺序呈三角形,四个子树按原来的顺序分别挂在两个孩子节点的下边。(如下图)

那我们就不必关注具体的技巧了,而是将三个节点和四个子树拆开,像暴力组装魔方那样(先拆散)拼上。

cpp 复制代码
template <typename T>
BinNode<T> * BST<T>::connect34(BinNode<T> * a, BinNode<T> * b, BinNode<T> * c, BinNode<T> * T1, BinNode<T> * T2, BinNode<T> *T3, BinNode<T> * T4)
{
	b->left = a;  b->right = c;
	a->left = T1; a->right = T2;
	c->left = T3; c->right = T4;

	a->parent = b; c->parent = b;

	if (T1) T1->parent = a;
	if (T2) T2->parent = a;
	if (T3) T3->parent = c;
	if (T4) T4->parent = c;
	a->updateHigh(); b->updateHigh(); c->updateHigh();
	return b;
}

template <typename T>
BinNode<T> * BST<T>::rotateAt(BinNode<T> * v)
{
	BinNode<T> * p = v->parent;
	BinNode<T> * g = p->parent;
	BinNode<T> * T1, *T2, *T3, *T4, *a, *b, *c;

	if (p == g->left && v == p->left)
	{
		a = v; b = p; c = g;
		T1 = v->left; T2 = v->right; T3 = p->right; T4 = g->right;
	}
	else if (p == g->left && v == p->right)
	{
		a = p; b = v; c = g;
		T1 = p->left; T2 = v->left; T3 = v->right; T4 = g->right;
		
	}	
	else if (p == g->right && v == p->left)
	{
		a = g; b = v; c = p;
		T1 = g->left; T2 = v->left; T3 = v->right; T4 = p->right;
	}
	else
	{
		a = g; b = p; c = v;
		T1 = g->left; T2 = p->left; T3 = v->left; T4 = v->right;
	}
	b->parent = g->parent; //向上链接
	return connect34(a, b, c, T1, T2, T3, T4);

}

05.综合评价AVL

5.1优点

  1. 查找、插入、删除,最坏时间复杂度为 O ( l o g n ) O(logn) O(logn)
  2. O ( n ) O(n) O(n)的存储空间

5.2缺点

  1. 需要额外维护高度或平衡因子这一指标(后续Splay Tree可改善这一问题)
  2. 删除操作后,最多需旋转 Ω ( l o g n ) \Omega(logn) Ω(logn)次
  3. 单次动态调整后,全树拓扑结构的变化量可能高达 Ω ( l o g n ) \Omega(logn) Ω(logn) (RedBlack Tree可缩到 O ( 1 ) O(1) O(1))

谢谢观看~

06.代码

注意

  1. fromParentTo()是根节点的情况
  2. connect34()向上链接别忘

插入算法

为什么不用现成的BST::insert(val)? BST::insert自带更新一串高度,旋转调整之后还得把这一串更新回来。

cpp 复制代码
BinNode<T> * insert(T const & val)
		{
			BinNode<T> * & X = BST<T>::search(val);
			if (!X)
			{
				X = new BinNode<T>(val, BST<T>::hot); 
				BinTree<T>::size++;
				BinNode<T> * X_copy = X;

				while (X_copy && AvlBalanced(X_copy))
				{
					X_copy->updateHigh();
					X_copy = X_copy->parent;
				}

				if (X_copy) //说明是因为遇到了不平衡节点才退出了while,现在解决不平衡问题
				{
					BinNode<T> * & tmp = BinTree<T>::fromParentTo(X_copy);
					tmp = BST<T>::rotateAt(tallerChild(tallerChild(X_copy))); // 内部自带单个节点更新高度
				}
				return X;
			}
		}

删除算法

受限于BST::remove的返回值仅仅是bool,所以用底层的removeAt. removeAt的返回值是接替者,但有时,接替者是NULL。还好有BST::hot,存放被删节点的父亲。实际上,BST::remove的更新高度也是从hot开始的

cpp 复制代码
bool remove(T const & val) 
		{
			BinNode<T> * & X = BST<T>::search(val);
			if (!X) return false;
			else
			{
				
				BST<T>::removeAt(X, BST<T>::hot);
				BinTree<T>::size--;

				// 与insert不同的是,remove可能要调整很多次
				for (BinNode<T> * g = BST<T>::hot; g; g = g->parent)
				{
					int i = BF(g);
					if (!AvlBalanced(g))
					{
						BinNode<T> * & tmp = BinTree<T>::fromParentTo(g);
						tmp = BST<T>::rotateAt(tallerChild(tallerChild(g))); 
					}
					else g->updateHigh();
				}
				return true;
			}
		}

完整代码:AVL.h

cpp 复制代码
# pragma once
# include "BST.h"

# define BF(x) (int)(getHigh(x->left) - getHigh(x->right))
# define AvlBalanced(x)  ( -2 < BF(x) && BF(x) < 2 )

template <typename T>
BinNode<T> * tallerChild(BinNode<T> * x)
{
	return  (getHigh(x->left) > getHigh(x->right)) ? x->left : x->right;
}

template <typename T>
class AVL :public BST<T>
{
	public:
		bool remove(T const & val) 
		{

			BinNode<T> * & X = BST<T>::search(val);
			if (!X)  return false;
			else
			{
				
				BST<T>::removeAt(X, BST<T>::hot);
				BinTree<T>::size--;

				// (可优化:直到到某祖先,高度不变,停止上行。那就要在刚刚更新高度时记录中途退出的位置,以便在此处判断)
				for (BinNode<T> * g = BST<T>::hot; g; g = g->parent)
				{
					int i = BF(g);
					if (!AvlBalanced(g))
					{
						BinNode<T> * & tmp = BinTree<T>::fromParentTo(g);
						tmp = BST<T>::rotateAt(tallerChild(tallerChild(g))); // 内部自带单个节点更新高度
					}
					else g->updateHigh();
				}
				return true;
			}
		}
		BinNode<T> * insert(T const & val)
		{
			BinNode<T> * & X = BST<T>::search(val);
			if (!X)
			{
				X = new BinNode<T>(val, BST<T>::hot); //这一句话将两个关系连接
				BinTree<T>::size++;
				BinNode<T> * X_copy = X;

				while (X_copy && AvlBalanced(X_copy))
				{
					X_copy->updateHigh();
					X_copy = X_copy->parent;
				}

				if (X_copy) //说明是因为遇到了不平衡节点才退出了while,现在解决不平衡问题
				{
					BinNode<T> * & tmp = BinTree<T>::fromParentTo(X_copy);
					tmp = BST<T>::rotateAt(tallerChild(tallerChild(X_copy))); // 内部自带单个节点更新高度
				}

				return X;
				
			}
		}
};

感谢观看~

附上前传:
C++数据结构之BinaryTree(二叉树)的实现
C++数据结构之BST(二叉搜索树)的实现

相关推荐
小爬虫程序猿9 分钟前
如何利用Python解析API返回的数据结构?
数据结构·数据库·python
奋斗的小花生4 小时前
c++ 多态性
开发语言·c++
pianmian14 小时前
python数据结构基础(7)
数据结构·算法
闲晨4 小时前
C++ 继承:代码传承的魔法棒,开启奇幻编程之旅
java·c语言·开发语言·c++·经验分享
UestcXiye6 小时前
《TCP/IP网络编程》学习笔记 | Chapter 3:地址族与数据序列
c++·计算机网络·ip·tcp
霁月风7 小时前
设计模式——适配器模式
c++·适配器模式
ChoSeitaku7 小时前
链表交集相关算法题|AB链表公共元素生成链表C|AB链表交集存放于A|连续子序列|相交链表求交点位置(C)
数据结构·考研·链表
偷心编程7 小时前
双向链表专题
数据结构
香菜大丸7 小时前
链表的归并排序
数据结构·算法·链表
jrrz08287 小时前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表