【数据分析】pandas 一

目录

一,pandas简介:

二,pandas数据结构Series简介:

[2.1 data为ndarray](#2.1 data为ndarray)

[2.2 data为字典](#2.2 data为字典)

三,Serise切片操作:

四,Series性质:

[4.1 Series类似于numpy,字典](#4.1 Series类似于numpy,字典)

[4.2 矢量化操作和标签对齐系列:](#4.2 矢量化操作和标签对齐系列:)

[4.3 name属性:](#4.3 name属性:)


一,pandas简介:

pandas是Python的一个第三方开源库,是Python数据分析的必备高级工具,Pandas 这个名字来源于面板数据(Panel Data)与数据分析(data analysis)这两个名词的组合。在经济学中,Panel Data 是一个关于多维数据集的术语。Pandas 最初被应用于金融量化交易领域,现在它的应用领域更加广泛,涵盖了农业、工业、交通等许多行业。

二,pandas数据结构Series简介:

Series是一个一维标记数组,能够保存任何数据类型(整数,字符串,浮点数,Python对象等)。创建它的基本方法是调用Series

首先我们先导入pandas

import numpy as np
import pandas as pd
s = pd.Series(data, index=index)

这里data可以有很多不同的东西:

python字典

一个ndarray

标量值(如 5)

传递的索引是轴标签的列表,因此根据数据是什么,分为几种情况:

2.1 data为ndarray

如果 data 是 ndarray,则索引必须与数据长度相同。如果没有传递索引,则会创建一个具有 value 的索引。[0,..,len(data)-1]

这里我们先给出index

s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])

a    0.469112
b   -0.282863
c   -1.509059
d   -1.135632
e    1.212112
dtype: float64

s.index

 Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

下面我们不给index

pd.Series(np.random.randn(5))

0   -0.173215
1    0.119209
2   -1.044236
3   -0.861849
4   -2.104569
dtype: float64

可以看到Python自动生成了一个索引

2.2 data为字典

Series可以从字典实例化:

d = {"b": 1, "a": 0, "c": 2}

b    1
a    0
c    2
dtype: int64

如果传递了索引,则将拉出索引中标签对应的数据中的值

d = {"a": 0.0, "b": 1.0, "c": 2.0}
pd.Series(d)
pd.Series(d, index=["b", "c", "d", "a"])

a    0.0
b    1.0
c    2.0
dtype: float64

b    1.0
c    2.0
d    NaN
a    0.0
dtype: float64

注意:NaN不是数字是pandas中使用的标准缺失数据标记

三,Serise切片操作:

Series与ndarray非常相似,并且是大多数Numpy函数的有效参数,Series也能对索引进行切片操作。

s[0]

 0.4691122999071863

s[:3]

a    0.469112
b   -0.282863
c   -1.509059
dtype: float64

s[s > s.median()]

a    0.469112
e    1.212112
dtype: float64

s[[4, 3, 1]]

e    1.212112
d   -1.135632
b   -0.282863
dtype: float64

四,Series性质:

4.1 Series类似于numpy,字典

与numpy数组一样,pandas的Series也有一个dtype

s.dtype

dtype('float64')

这通常是NumPy dtype。然而,pandas和第3方库在几个地方扩展了NumPy的类型系统,在这种情况下,dtype将是ExtensionDtype.pandas中的一些示例是分类数据和可为空整数数据类型。

Series也类似于固定大小的字典,可以通过索引标签获取和设置值:

s["a"]
s["e"] = 12.0
"e" in s
"f" in s

0.4691122999071863

a     0.469112
b    -0.282863
c    -1.509059
d    -1.135632
e    12.000000
dtype: float64

True
False

如果索引中不包含标签则会引发异常。

使用Series.get()方法,丢失的标签将返回None或指定的默认值:

s.get("f", np.nan)

nan

4.2 矢量化操作和标签对齐系列:

使用原始Numpy数组时间,通常不需要逐值循环,在panda中使用Series时间也是如此,Series可以传递到大多数需要ndarray的Numpy方法中

s + s
s * 2
np.exp(s)

a     0.938225
b    -0.565727
c    -3.018117
d    -2.271265
e    24.000000
dtype: float64

a     0.938225
b    -0.565727
c    -3.018117
d    -2.271265
e    24.000000
dtype: float64

a         1.598575
b         0.753623
c         0.221118
d         0.321219
e    162754.791419
dtype: float64

Series和ndarray之间的一个关键区别是,Series会根据标签自动对齐数据,因此,在编写计算时无需烤炉Series的标签是否相同。

s[1:] + s[:-1]

a         NaN
b   -0.565727
c   -3.018117
d   -2.271265
e         NaN
dtype: float64

未对齐之间的运算结果Series将包含所涉及索引的并集。Series如果在其中一个或另一个中找不到标签,结果将被标记为丢失NaN。能够在不进行任何显式数据对齐的情况下编写代码,为交互式数据分析和研究提供了巨大的自由度和灵活性。pandas数据结构的集成数据对齐功能使pandas与大多数处理标记数据的相关工具区分开来。

注意:一般来说,我们选择使不同索引对象之间的操作的默认结果产生索引的并集,以避免信息丢失。尽管缺少数据,但拥有索引标签通常是计算过程中的重要信息。您当然可以选择通过dropna函数删除丢失数据的标签。

4.3 name属性:

Series还有一个name属性:

s = pd.Series(np.random.randn(5), name="something")

s.name

0   -0.494929
1    1.071804
2    0.721555
3   -0.706771
4   -1.039575
Name: something, dtype: float64

'something'

另外还能又pandas.Series.rename()来重命名

s2 = s.rename("different")
s2.name

'different'

4.4,基本属性

|----------|----------------------------|
| 属性 | 用途 |
| s.shape | 查看数据行列 |
| s.ndim | 查看维度,Series 是一维,ndim 恒等于1 |
| s.size | 查看数据总数 |
| s.index | 查看索引 |
| s.values | 查看数据值 |
| s.name | 查看 Series 对象的 name,若未设定则为空 |

(1)

s = pd.Series(np.random.randint(1,10,size=(10,)))
s.head() # 默认是前五行数据,可自定义行数,比如想要十行的话,s.head(10)

(2)isnull(),notnull()函数检测缺失数据

创建一个测试集

obj = Series([10,4,np.nan])

使用notnull查看

notnull = pd.notnull(obj)

根据isnull()返回的结果,取不为空的数据

obj[notnull]
相关推荐
weixin_4662027833 分钟前
第31周:天气识别(Tensorflow实战第三周)
分类·数据挖掘·tensorflow
山海青风3 小时前
使用 OpenAI 进行数据探索性分析(EDA)
信息可视化·数据挖掘·数据分析
莫叫石榴姐4 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
AI完全体6 小时前
【AI日记】24.11.22 学习谷歌数据分析初级课程-第2/3课
学习·数据分析
请你喝好果汁6419 小时前
单细胞|M3-4. 细胞聚类与轨迹推断
机器学习·数据挖掘·聚类
吾门9 小时前
YOLO入门教程(三)——训练自己YOLO11实例分割模型并预测【含教程源码+一键分类数据集 + 故障排查】
yolo·分类·数据挖掘
电子手信10 小时前
知识中台在多语言客户中的应用
大数据·人工智能·自然语言处理·数据挖掘·知识图谱
databook11 小时前
『玩转Streamlit』--布局与容器组件
python·机器学习·数据分析
shansjqun11 小时前
教学内容全覆盖:航拍杂草检测与分类
人工智能·分类·数据挖掘
SelectDB技术团队11 小时前
兼顾高性能与低成本,浅析 Apache Doris 异步物化视图原理及典型场景
大数据·数据库·数据仓库·数据分析·doris