机器学习---监督学习和非监督学习

根据训练期间接受的监督数量和监督类型,可以将机器学习分为以下四种类型:监督学习、非监督学习、半监督学习和强化学习。

监督学习

在监督学习中,提供给算法的包含所需解决方案的训练数据,成为标签或标记。

简单地说,就是监督学习是包含自变量和因变量(有Y),同时可以用于分类和回归。

常见算法:

  • K近邻算法
  • 线性回归
  • logistic回归
  • 支持向量机(SVM)
  • 决策树和随机森林
  • 神经网络

无监督学习

无监督学习的训练数据都是未经标记的,算法会在没有指导的情况下自动学习。

简单地说,就是训练数据只有自变量没有因变量(就是没有Y)。

常见算法:

  • 聚类算法
    • K均值算法(K-means)
    • 基于密度的聚类方法(DBSCAN)
    • 最大期望算法
  • 可视化和降维
    • 主成分分析
    • 核主成分分析
  • 关联规则学习
    • Apriori
    • Eclat

半监督学习

有些算法可以处理部分标记的训练数据,通常是大量未标记的数据和少量标记的数据,这种成为半监督学习。

如照片识别就是很好的例子。在线相册可以指定识别同一个人的照片(无监督学习),当你把这些同一个人增加一个标签的后,新的有同一个人的照片就自动帮你加上标签了。

大多数半监督学习算法都是无监督和监督算法的结合。例如深度信念网络(DBN)基于一种相互堆叠的无监督式组件。

强化学习

强化学习是一个非常与众不同的算法,它的学习系统能够观测环境,做出选择,执行操作并获得回报,或者是以负面回报的形式获得惩罚。它必须自行学习什么是最好的策略,从而随着时间推移获得最大的回报。

例如,许多机器人通过强化学习算法来学习如何行走。AlphaGo项目也是一个强化学习的好例子。

相关推荐
打码人的日常分享10 分钟前
智慧城市一网统管建设方案,新型城市整体建设方案(PPT)
大数据·运维·服务器·人工智能·信息可视化·智慧城市
Sui_Network15 分钟前
21shares 在纳斯达克推出 2 倍 SUI 杠杆 ETF(TXXS)
大数据·人工智能·游戏·金融·区块链
龙亘川17 分钟前
开箱即用的智慧城市一网统管 AI 平台——功能模块详解(3)
大数据·人工智能·智慧城市·智慧城市一网统管 ai 平台
Michaelwubo21 分钟前
tritonserver 推理框架
人工智能
稳石氢能1 小时前
稳石氢能董事长贾力出席2025高工氢电年会,呼吁制氢产业生态建设获广泛赞同。
人工智能
2301_800256111 小时前
8.2 空间查询基本组件 核心知识点总结
数据库·人工智能·算法
xiaozi41202 小时前
Ruey S. Tsay《时间序列分析》Python实现笔记:综合与应用
开发语言·笔记·python·机器学习
d111111111d2 小时前
STM32低功耗学习-停止模式-(学习笔记)
笔记·stm32·单片机·嵌入式硬件·学习
Aspect of twilight2 小时前
PyTorch DDP分布式训练Pytorch代码讲解
人工智能·pytorch·python
找了一圈尾巴2 小时前
LLM-as-a-Judge-论文学习(下)
学习·模型评估