机器学习---监督学习和非监督学习

根据训练期间接受的监督数量和监督类型,可以将机器学习分为以下四种类型:监督学习、非监督学习、半监督学习和强化学习。

监督学习

在监督学习中,提供给算法的包含所需解决方案的训练数据,成为标签或标记。

简单地说,就是监督学习是包含自变量和因变量(有Y),同时可以用于分类和回归。

常见算法:

  • K近邻算法
  • 线性回归
  • logistic回归
  • 支持向量机(SVM)
  • 决策树和随机森林
  • 神经网络

无监督学习

无监督学习的训练数据都是未经标记的,算法会在没有指导的情况下自动学习。

简单地说,就是训练数据只有自变量没有因变量(就是没有Y)。

常见算法:

  • 聚类算法
    • K均值算法(K-means)
    • 基于密度的聚类方法(DBSCAN)
    • 最大期望算法
  • 可视化和降维
    • 主成分分析
    • 核主成分分析
  • 关联规则学习
    • Apriori
    • Eclat

半监督学习

有些算法可以处理部分标记的训练数据,通常是大量未标记的数据和少量标记的数据,这种成为半监督学习。

如照片识别就是很好的例子。在线相册可以指定识别同一个人的照片(无监督学习),当你把这些同一个人增加一个标签的后,新的有同一个人的照片就自动帮你加上标签了。

大多数半监督学习算法都是无监督和监督算法的结合。例如深度信念网络(DBN)基于一种相互堆叠的无监督式组件。

强化学习

强化学习是一个非常与众不同的算法,它的学习系统能够观测环境,做出选择,执行操作并获得回报,或者是以负面回报的形式获得惩罚。它必须自行学习什么是最好的策略,从而随着时间推移获得最大的回报。

例如,许多机器人通过强化学习算法来学习如何行走。AlphaGo项目也是一个强化学习的好例子。

相关推荐
百***354812 分钟前
DeepSeek在情感分析中的细粒度识别
人工智能
AA陈超20 分钟前
Git常用命令大全及使用指南
笔记·git·学习
Qzkj66624 分钟前
从规则到智能:企业数据分类分级的先进实践与自动化转型
大数据·人工智能·自动化
weixin79893765432...1 小时前
React + Fastify + DeepSeek 实现一个简单的对话式 AI 应用
人工智能·react.js·fastify
麦麦在写代码1 小时前
前端学习5
前端·学习
大千AI助手1 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
狂炫冰美式2 小时前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端
降临-max2 小时前
JavaSE---网络编程
java·开发语言·网络·笔记·学习
LCG元2 小时前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能
我不是QI2 小时前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习