机器学习---监督学习和非监督学习

根据训练期间接受的监督数量和监督类型,可以将机器学习分为以下四种类型:监督学习、非监督学习、半监督学习和强化学习。

监督学习

在监督学习中,提供给算法的包含所需解决方案的训练数据,成为标签或标记。

简单地说,就是监督学习是包含自变量和因变量(有Y),同时可以用于分类和回归。

常见算法:

  • K近邻算法
  • 线性回归
  • logistic回归
  • 支持向量机(SVM)
  • 决策树和随机森林
  • 神经网络

无监督学习

无监督学习的训练数据都是未经标记的,算法会在没有指导的情况下自动学习。

简单地说,就是训练数据只有自变量没有因变量(就是没有Y)。

常见算法:

  • 聚类算法
    • K均值算法(K-means)
    • 基于密度的聚类方法(DBSCAN)
    • 最大期望算法
  • 可视化和降维
    • 主成分分析
    • 核主成分分析
  • 关联规则学习
    • Apriori
    • Eclat

半监督学习

有些算法可以处理部分标记的训练数据,通常是大量未标记的数据和少量标记的数据,这种成为半监督学习。

如照片识别就是很好的例子。在线相册可以指定识别同一个人的照片(无监督学习),当你把这些同一个人增加一个标签的后,新的有同一个人的照片就自动帮你加上标签了。

大多数半监督学习算法都是无监督和监督算法的结合。例如深度信念网络(DBN)基于一种相互堆叠的无监督式组件。

强化学习

强化学习是一个非常与众不同的算法,它的学习系统能够观测环境,做出选择,执行操作并获得回报,或者是以负面回报的形式获得惩罚。它必须自行学习什么是最好的策略,从而随着时间推移获得最大的回报。

例如,许多机器人通过强化学习算法来学习如何行走。AlphaGo项目也是一个强化学习的好例子。

相关推荐
产品人卫朋3 分钟前
「产品、IPD、战略、流程」知识图谱速查清单.v7.0
人工智能·知识图谱·产品经理·需求分析·创业·ipd流程·华为ipd
用户5191495848453 分钟前
深入剖析CVE-2025-41115:Grafana企业版SCIM特权升级漏洞利用实践
人工智能·aigc
苏子铭6 分钟前
个人笔记,关于数学工具箱功能规划与架构设计
人工智能·机器学习
盈创力和20077 分钟前
从“感知”到“认知”:基于边缘AI的以太网多参量环境传感器如何重构工业物联终端?
人工智能·以太网多合一传感器·以太网温湿度气体多参量传感器
rit843249917 分钟前
基于高斯混合模型(GMM)的语音识别系统:MATLAB实现与核心原理
人工智能·matlab·语音识别
BullSmall19 分钟前
《庄子・逍遥游》对照版
学习
容智信息20 分钟前
Hyper Agent:企业级Agentic架构怎么实现?
人工智能·信息可视化·自然语言处理·架构·自动驾驶·智慧城市
Julyers22 分钟前
【Paper】FRST(快速径向对称变换)算法
图像处理·人工智能·计算机视觉·圆检测
@zulnger28 分钟前
python 学习笔记(文件和目录操作)
笔记·python·学习
Bony-29 分钟前
驾驶员行为检测:基于卷积神经网络(CNN)的识别方法
人工智能·神经网络·cnn