import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sbn
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
# 使用pandas读取csv格式的文件
'''
数据量过多,使用数据过多会计算较慢,所以使用较少数据进行学习
'''
trainData=pd.read_csv("train.csv")
# 使用 query 查询出部分数据 71664
trainData = trainData.query("x>2.0 & x<2.5 & y>2.0 &y<2.5")
# 去掉出现次数较少的place 使用group分组
# 统计出出现的次数
trainDatacount=trainData.groupby("place_id").count()
# 选择出出现次数大于3的t
trainDatacount= trainDatacount[trainDatacount["row_id"]>3]
#将低于3的地方清理掉
trainData = trainData[trainData["place_id"].isin(trainDatacount.index)]
#数据处理是关键
#修改时间 将绝对时间改变为可以使用的时间----进行训练时可以使用到时间
time=pd.to_datetime(trainData["time"],unit="s")
time=pd.DatetimeIndex(time)
trainData["day"]=time.day
trainData["hour"]=time.hour
trainData["weekday"]=time.weekday
# 确定特征值和目标值
x = trainData[["x","y","accuracy","hour","day","weekday"]]
y = trainData["place_id"]
# 划分训练集和测试集 使用 sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=20,train_size=0.25)
# 特征处理
#实例化转换器----将数据标准化或者归一化
transfer=StandardScaler()
# 将数据标准化
x_train=transfer.fit_transform(x_train)
x_test=transfer.transform(x_test)
# 进行模型训练
# 实例化一个模型对象
estimator = KNeighborsClassifier()
# 网格搜索,选出结果最好的参数
param_grid={"n_neighbors":[1,3,5,7,9]}
estimator= GridSearchCV(estimator,param_grid=param_grid,cv=10,n_jobs=-1)
# 模型训练
estimator.fit(x_train,y_train)
# 模型评估
print(estimator.best_estimator_)
print(estimator.best_params_)
print(estimator.best_score_)
print(estimator.predict(x_test))
机器学习---facebook的案例学习
我叫小邋遢2023-08-12 10:03
相关推荐
美狐美颜sdk3 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能DeepSeek-大模型系统教程3 小时前
推荐 7 个本周 yyds 的 GitHub 项目。郭庆汝3 小时前
pytorch、torchvision与python版本对应关系IT古董3 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器小雷FansUnion5 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战资讯分享周5 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代叶子爱分享6 小时前
计算机视觉与图像处理的关系鱼摆摆拜拜6 小时前
第 3 章:神经网络如何学习一只鹿鹿鹿6 小时前
信息化项目验收,软件工程评审和检查表单张较瘦_7 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术