Flink源码之JobMaster启动流程

Flink中Graph转换流程如下:

Flink Job提交时各种类型Graph转换流程中,JobGraph是Client端形成StreamGraph后经过Operator Chain优化后形成的,然后提交给JobManager的Restserver,最终转发给JobManager的Dispatcher处理。

复制代码
CompletableFuture<Acknowledge> submitJob(JobGraph jobGraph, @RpcTimeout Time timeout);

本文主要解析从JobGraph转换为ExecutionGraph过程,执行栈如下:

复制代码
Dispacher::submitJob
Dispacher::internalSubmitJob
Dispacher::persistAndRunJob
Dispacher::runJob
Dispacher::createJobManagerRunner
JobMasterServiceLeadershipRunnerFactory::createJobManagerRunner
JobMasterServiceLeadershipRunner:start
JobMasterServiceLeadershipRunner::grantLeadership
JobMasterServiceLeadershipRunner::startJobMasterServiceProcessAsync
JobMasterServiceLeadershipRunner::verifyJobSchedulingStatusAndCreateJobMasterServiceProcess
JobMasterServiceLeadershipRunner::createNewJobMasterServiceProcess
DefaultJobMasterServiceProcessFactory::create
DefaultJobMasterServiceProcess::new
DefaultJobMasterServiceFactory::createJobMasterService
DefaultJobMasterServiceFactory::internalCreateJobMasterService //创建JobMaster并调用其start
JobMaster::new //调用DefaultSlotPoolServiceSchedulerFactory::createScheduler
DefaultSlotPoolServiceSchedulerFactory::createScheduler //根据调度模式选择调度器
DefaultSchedulerFactory::createInstance //创建SchedulerNG
DefaultScheduler::new //
SchedulerBase::new
    SchedulerBase::createAndRestoreExecutionGraph 
    DefaultExecutionGraphFactory::createAndRestoreExecutionGraph
    DefaultExecutionGraphBuilder.buildGraph//在此会将JobGraph转换为ExecutionGraph
        DefaultExecutionGraph::new
        DefaultExecutionGraph::attachJobGraph //创建ExecutionJobVertex
        	DefaultExecutionTopology.fromExecutionGraph //创建ExecutionTopology
        DefaultExecutionGraph::enableCheckpointing //创建CheckpointCoordinator
        	CheckpointCoordinator::new   
PipelinedRegionSchedulingStrategy.Factory.createInstance //创建PipelinedRegionSchedulingStrategy

JobMaster::start
JobMaster::onStart
JobMaster::startJobExecution
JobMaster::startJobMasterServices //获取RM地址后与RM建立连接
JobMaster::startScheduling
SchedulerBase::startScheduling
DefaultScheduler::startSchedulingInternal
PipelinedRegionSchedulingStrategy::startScheduling
PipelinedRegionSchedulingStrategy::maybeScheduleRegions
DefaultScheduler::allocateSlotsAndDeploy
DefaultScheduler::allocateSlots
	SlotSharingExecutionSlotAllocator::allocateSlotsFor //分配Slot
DefaultScheduler::waitForAllSlotsAndDeploy
    DefaultScheduler::assignAllResourcesAndRegisterProducedPartitions
        DefaultScheduler::assignResource //为每个Execution分配Slot
        DefaultScheduler::registerProducedPartitions
    DefaultScheduler::deployAll
    DefaultScheduler::deployOrHandleError
    DefaultScheduler::deployTaskSafe
    DefaultExecutionVertexOperations::deploy
        ExecutionVertex::deploy
        Execution::deploy //提交任务向TM提交Deploymen
        TaskManagerGateway.submitTask

在整个提交过程中,首先获取JobMasterService的Leader权限,然后对一个JobGraph生成一个JobMaster,JobMaster先将JobGraph转换为ExecutionGraph,转换核心逻辑在DefaultExecutionGraph::attachJobGraph方法中,最后为每个Execution申请Slot资源,对每个Execution向TM提交TaskDeploymentDescriptor调度执行。

JobMaster管理整个Job的生命周期,主要有以下功能:

  1. 将JobGraph转换为ExecutionGraph,创建调度器调度执行
  2. 通过心跳保持与ResourceManager的连接,为当前Job向RM申请Slot资源
  3. 接受TaskManager的OfferSlot, 向TM提交task, 主动发送心跳请求保持与执行当前Job的TM的连接
  4. 创建CheckpointCoordinator,触发Checkpoint

Flink中可通过jobmanager.scheduler配置调度类型,默认为NG:

: 复制代码
NG:new generation scheduler
Adaptive: adaptive scheduler; supports reactive mode
相关推荐
辰宇信息咨询34 分钟前
3D自动光学检测(AOI)市场调研报告-发展趋势、机遇及竞争分析
大数据·数据分析
珠海西格2 小时前
“主动预防” vs “事后补救”:分布式光伏防逆流技术的代际革命,西格电力给出标准答案
大数据·运维·服务器·分布式·云计算·能源
创客匠人老蒋2 小时前
从数据库到智能体:教育企业如何构建自己的“数字大脑”?
大数据·人工智能·创客匠人
2501_948120153 小时前
基于大数据的泄漏仪设备监控系统
大数据
Spey_Events4 小时前
星箭聚力启盛会,2026第二届商业航天产业发展大会暨商业航天展即将开幕!
大数据·人工智能
AC赳赳老秦4 小时前
专利附图说明:DeepSeek生成的专业技术描述与权利要求书细化
大数据·人工智能·kafka·区块链·数据库开发·数据库架构·deepseek
GeeLark4 小时前
#请输入你的标签内容
大数据·人工智能·自动化
智能相对论5 小时前
2万台?九识无人车车队规模靠谱吗?
大数据
小小王app小程序开发6 小时前
淘宝扭蛋机小程序核心玩法拆解与技术运营分析
大数据·小程序
得物技术7 小时前
从“人治”到“机治”:得物离线数仓发布流水线质量门禁实践
大数据·数据仓库