Flink源码之JobMaster启动流程

Flink中Graph转换流程如下:

Flink Job提交时各种类型Graph转换流程中,JobGraph是Client端形成StreamGraph后经过Operator Chain优化后形成的,然后提交给JobManager的Restserver,最终转发给JobManager的Dispatcher处理。

复制代码
CompletableFuture<Acknowledge> submitJob(JobGraph jobGraph, @RpcTimeout Time timeout);

本文主要解析从JobGraph转换为ExecutionGraph过程,执行栈如下:

复制代码
Dispacher::submitJob
Dispacher::internalSubmitJob
Dispacher::persistAndRunJob
Dispacher::runJob
Dispacher::createJobManagerRunner
JobMasterServiceLeadershipRunnerFactory::createJobManagerRunner
JobMasterServiceLeadershipRunner:start
JobMasterServiceLeadershipRunner::grantLeadership
JobMasterServiceLeadershipRunner::startJobMasterServiceProcessAsync
JobMasterServiceLeadershipRunner::verifyJobSchedulingStatusAndCreateJobMasterServiceProcess
JobMasterServiceLeadershipRunner::createNewJobMasterServiceProcess
DefaultJobMasterServiceProcessFactory::create
DefaultJobMasterServiceProcess::new
DefaultJobMasterServiceFactory::createJobMasterService
DefaultJobMasterServiceFactory::internalCreateJobMasterService //创建JobMaster并调用其start
JobMaster::new //调用DefaultSlotPoolServiceSchedulerFactory::createScheduler
DefaultSlotPoolServiceSchedulerFactory::createScheduler //根据调度模式选择调度器
DefaultSchedulerFactory::createInstance //创建SchedulerNG
DefaultScheduler::new //
SchedulerBase::new
    SchedulerBase::createAndRestoreExecutionGraph 
    DefaultExecutionGraphFactory::createAndRestoreExecutionGraph
    DefaultExecutionGraphBuilder.buildGraph//在此会将JobGraph转换为ExecutionGraph
        DefaultExecutionGraph::new
        DefaultExecutionGraph::attachJobGraph //创建ExecutionJobVertex
        	DefaultExecutionTopology.fromExecutionGraph //创建ExecutionTopology
        DefaultExecutionGraph::enableCheckpointing //创建CheckpointCoordinator
        	CheckpointCoordinator::new   
PipelinedRegionSchedulingStrategy.Factory.createInstance //创建PipelinedRegionSchedulingStrategy

JobMaster::start
JobMaster::onStart
JobMaster::startJobExecution
JobMaster::startJobMasterServices //获取RM地址后与RM建立连接
JobMaster::startScheduling
SchedulerBase::startScheduling
DefaultScheduler::startSchedulingInternal
PipelinedRegionSchedulingStrategy::startScheduling
PipelinedRegionSchedulingStrategy::maybeScheduleRegions
DefaultScheduler::allocateSlotsAndDeploy
DefaultScheduler::allocateSlots
	SlotSharingExecutionSlotAllocator::allocateSlotsFor //分配Slot
DefaultScheduler::waitForAllSlotsAndDeploy
    DefaultScheduler::assignAllResourcesAndRegisterProducedPartitions
        DefaultScheduler::assignResource //为每个Execution分配Slot
        DefaultScheduler::registerProducedPartitions
    DefaultScheduler::deployAll
    DefaultScheduler::deployOrHandleError
    DefaultScheduler::deployTaskSafe
    DefaultExecutionVertexOperations::deploy
        ExecutionVertex::deploy
        Execution::deploy //提交任务向TM提交Deploymen
        TaskManagerGateway.submitTask

在整个提交过程中,首先获取JobMasterService的Leader权限,然后对一个JobGraph生成一个JobMaster,JobMaster先将JobGraph转换为ExecutionGraph,转换核心逻辑在DefaultExecutionGraph::attachJobGraph方法中,最后为每个Execution申请Slot资源,对每个Execution向TM提交TaskDeploymentDescriptor调度执行。

JobMaster管理整个Job的生命周期,主要有以下功能:

  1. 将JobGraph转换为ExecutionGraph,创建调度器调度执行
  2. 通过心跳保持与ResourceManager的连接,为当前Job向RM申请Slot资源
  3. 接受TaskManager的OfferSlot, 向TM提交task, 主动发送心跳请求保持与执行当前Job的TM的连接
  4. 创建CheckpointCoordinator,触发Checkpoint

Flink中可通过jobmanager.scheduler配置调度类型,默认为NG:

: 复制代码
NG:new generation scheduler
Adaptive: adaptive scheduler; supports reactive mode
相关推荐
C+++Python3 分钟前
Flume的核心概念和架构
大数据·架构·flume
YangYang9YangYan3 小时前
2026高职大数据与会计专业学数据分析的技术价值分析
大数据·数据挖掘·数据分析
AI智能探索者8 小时前
揭秘大数据领域特征工程的核心要点
大数据·ai
做cv的小昊9 小时前
【TJU】信息检索与分析课程笔记和练习(8)(9)发现系统和全文获取、专利与知识产权基本知识
大数据·笔记·学习·全文检索·信息检索
AC赳赳老秦9 小时前
DeepSeek 私有化部署避坑指南:敏感数据本地化处理与合规性检测详解
大数据·开发语言·数据库·人工智能·自动化·php·deepseek
C7211BA11 小时前
通义灵码和Qoder的差异
大数据·人工智能
三不原则11 小时前
银行 AIOps 实践拆解:金融级故障自愈体系如何搭建
大数据·运维
大厂技术总监下海13 小时前
数据湖加速、实时数仓、统一查询层:Apache Doris 如何成为现代数据架构的“高性能中枢”?
大数据·数据库·算法·apache
2501_9418824815 小时前
AI系统工程化架构与大模型部署实践分享
flink
新诺韦尔API16 小时前
手机三要素验证不通过的原因?
大数据·智能手机·api