opencv GStreamer拉rtsp流之Windows平台

目录

  • [1. 先决条件](#1. 先决条件)
  • [2. 代码](#2. 代码)
  • [3. GStreamer参数说明](#3. GStreamer参数说明)

1. 先决条件

opencv要想使用GStreamer拉rtsp流,那么编译opencv必须带上GStreamer编译选项,具体参见:opencv带GStreamer之Windows编译

2. 代码

cpp 复制代码
#include <opencv2/opencv.hpp>

using namespace cv;

int opencv_gstreamer_decoder_demo()
{
	cv::VideoCapture capture;
	capture.open("rtspsrc location=rtsp://admin:a88888888@192.168.1.64:554/Streaming/Channels/101?transportmode=unicast&profile=Profile_1 latency=0 ! decodebin ! videoconvert ! video/x-raw,format=BGR ! appsink", cv::CAP_GSTREAMER);
	if (!capture.isOpened())
	{
		cout << "open video faild" << std::endl;
		std::cout << cv::getBuildInformation() << std::endl;
		return -1;
	}
	cv::Mat frame;
	while (capture.read(frame))
	{
		imshow("frame", frame);
		if (waitKey(1) == 'q') break;
	}
	// 释放资源
	capture.release();
	cv::destroyAllWindows();

	return 0;
}

int main()
{
	opencv_gstreamer_decoder_demo();
	return 0;
}

3. GStreamer参数说明

cpp 复制代码
"rtspsrc location=rtsp://admin:a88888888@192.168.1.64:554/Streaming/Channels/101?transportmode=unicast&profile=Profile_1 latency=0 ! decodebin ! videoconvert ! video/x-raw,format=BGR ! appsink"
  1. rtspsrc location={rtsp_url} :这是GStreamer的元素,用于指定RTSP流的位置。 {rtsp_url} 是您实际的RTSP流URL,包括用户名、密码、IP地址、端口号和流路径。

  2. latency=0 :这是 rtspsrc 元素的属性,用于设置延迟时间。在这种情况下,将延迟设置为0,以尽可能减少延迟。

  3. decodebin :这是GStreamer的元素,用于自动选择适当的解码器来解码输入流。它根据输入流的编码格式动态选择解码器。

  4. videoconvert :这是GStreamer的元素,用于进行视频格式转换。它将解码后的视频帧转换为指定的格式,以便后续处理或显示。

  5. video/x-raw,format=BGR :这是GStreamer的媒体类型,用于指定输出视频帧的格式。在这种情况下,它指定输出视频帧的格式为BGR。

  6. appsink :这是GStreamer的元素,用于将视频帧传递给应用程序进行处理。它充当视频帧的接收器,以供后续在应用程序中使用。

综上所述,该GStreamer管道的作用是从指定的RTSP流中拉取视频数据,然后通过解码、格式转换等处理,将视频帧传递给应用程序进行进一步处理或显示。

相关推荐
优爱蛋白5 分钟前
MMP-9(20-469) His Tag 蛋白:高活性可溶性催化结构域的研究工具
人工智能·健康医疗
阿正的梦工坊5 分钟前
Kronecker积详解
人工智能·深度学习·机器学习
Rui_Freely7 分钟前
Vins-Fusion之ROS2(节点创建、订阅者、发布者)(一)
人工智能·计算机视觉
快降重7 分钟前
投稿前的“精准体检”:自查查重,如何选择可靠的第三方工具?
人工智能·aigc·写作·降重·查重·降ai
麦麦大数据18 分钟前
F067 中医养生知识图谱健康问答系统+膳食食疗系统
人工智能·知识图谱·问答·养生·膳食·食疗
Dfreedom.21 分钟前
从 model(x) 到__call__:解密深度学习框架的设计基石
人工智能·pytorch·python·深度学习·call
熬夜敲代码的小N33 分钟前
AI for Science技术解析:从方法论到前沿应用的全视角洞察
人工智能
Tadas-Gao39 分钟前
AI是否存在“系统一”与“系统二”?——从认知科学到深度学习架构的跨学科解读
人工智能·架构·系统架构·大模型·llm
小李子不吃李子39 分钟前
人工智能与创新第一章练习题
人工智能
汤姆yu1 小时前
基于深度学习的水稻病虫害检测系统
人工智能·深度学习